Neuroscientists Find Brain Stem Cells that May Be Responsible for Higher Functions, Bigger Brains
Study Shows Two-Drug Combination Has Potential to Fight Cocaine Addiction
Clinical Trials Start for Stroke Drug Developed by Scripps Research Institute, USC, and ZZ Biotech
Scientist Awarded $1.9 Million to Study Food Intake and Metabolism



Scientist Awarded $1.9 Million to Study Food Intake and Metabolism

By Eric Sauter

A scientist from the Florida campus of The Scripps Research Institute has been awarded $1.9 million from the National Institutes of Health to study pathways that regulate how we coordinate the timing of our desire for food throughout the day. These pathways play a key role in maintaining the body’s balance between how much we eat and our metabolism and energy expenditure.

Andrew Butler, an associate professor at Scripps Research, is the principal investigator for the new four-year study.

The research focuses on the melanocortin-3 receptor (MC3R, a g-protein coupled receptor) in the central nervous system. The MC3R is one component of the central nervous melanocortin system, which normally responds to signals of nutrient intake. The actions of the central nervous melanocortin system involving MC3Rs are central to the regulation of our metabolism. Attenuated activity of this system has been implicated in a range of metabolic diseases, including obesity and insulin resistance (a precursor to diabetes).

“One function of the melanocortin system is to prevent obesity in humans,” he said, “and this system is therefore considered an attractive target for developing drugs against obesity and eating disorders. Unfortunately, very little is known about the functions of melanocortin-3 receptors.”

Butler’s ongoing research suggests that MC3Rs help synchronize our circadian rhythms (24-hour day-night cycles) with food intake. MC3Rs are also linked to the regulation of glucose production and insulin action during cycles of fasting and feeding.  

“Our goal for this new study is two-fold,” Butler said. “We want to identify the MC3R signaling pathways involved in regulating behaviors that anticipate feeding, and we want to look at pathways responsible for maintaining metabolic homeostasis.”

Beyond forming a better understanding of the functions of MC3R in the central nervous system, Butler said, the ultimate point of the research is to develop new and innovative approaches to prevent and treat metabolic and circadian-rhythm disorders.

Send comments to: press[at]

The new project, led by Associate Professor Andrew Butler, will study biological pathways that coordinate the timing of our desire for food throughout the day. (Photo by James McEntee.)