Scripps Research Logo

Representative Publications

Truong, L.N., Li, Y., Sun, E., Ang, K., Hwang, P.Y., and Wu, X. (2014) Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication. J. Biol. Chem. 289:28910-28923.

Wang, H.*, Li, Y.*, Truong, L.N., Shi,L.Z., Hwang, P.Y.H., He, J., Cho, M.J., Li, H., Negrete, A., Shiloach, J., Berns, M.W., Shen, B., Chen, L. and Wu, X. (2014) CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell. 54:1012-1021. (*equal contribution)

Wei, N., Shi, Y., Truong, L.N., Fisch, K., Xu, T., Gardiner, E., Fu, G., Hsu, Y.O., Kishi, S., Su, A., Wu, X., and Yang, X. (2014) Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Mol Cell. 56:323-332.

Makharashvili N., Tubbs A.T., Yang S.H., H., Barton O., Zhou Y., Deshpande R.A., Lee J.H., Lobrich M., Sleckman B.P., Wu X., Paull T.T. (2014) Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell. 54: 1022-1033.

Truong, L.*, Li, Y.*, Shi, L., Hwang, P., He, J., Wang, H., Razavian, N., Berns, M., and Wu, X. (2013) Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci. 110:7720-7725. (*equal contribution)

Wang, H., Shi, L.Z., Wong, C.C., Han, X., Hwang, P.Y., Truong, L.N., Zhu, Q., Shao, Z., Chen, D.J., Berns, M.W., Yates JR 3rd, Chen L, Wu X. (2013) The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9:e1003277.

Lu, C.S.*, Truong, L.N.*, Aslanian, A., Shi,L.Z., Li, Y., Hwang, P.Y.H., Koh, K.H., Hunter, T., Yates III, J.R., Berns, M.W., and Wu, X. (2012) The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination. J. Biol. Chem., 287: 43984-43994. (*equal contribution)

He, J., Shi, L.Z., Truong, L.N., Lu, C.S., Razavian, N., Li, J., Negrete, A., Shiloach, J., Berns, M.W. and Wu, X. (2012) Rad50 zinc hook is important for the Mre11 complex to bind chromosomal DNA double-strand breaks and initiate various DNA damage responses. J. Biol. Chem. 287:31747-31756.

Wang, H., Shao, Z., Shi, L.Z., Hwang, P.Y., Truong, L.N., Berns, M.W., Chen, D.J. and Wu, X. (2012) CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks. J. Biol. Chem. 287:21471-21480.

Lee, A.Y.*, Chiba, T.*, Truong, L.N., Cheng, A.N., Do, J., Cho, M.J., Chen, L. and Wu, X. (2012) Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J. Biol. Chem. 287:2531-3543. (*equal contribution)

Truong, L.N. and Wu, X. (2011) Prevention of DNA re-replication in eukaryotic cells. J. Mol. Cell Biol. 3:13-22.

Shi, W., Feng, Z., Zhang, J., Gonzalez-Suarez, I., Vanderwaal, R.P., Wu, X., Powell, S.M., Roti Roti, J.L., Gonzalo, S. and Zhang, J. (2010) The role of RPA2 phosphorylation in homologous recombination in response to replication arrest.  Carcinogenesis Jun 31(6):994-1002.

Feng, J., Wakeman, T., Yong, S., Wu, X., Kornbluth, S. and Wang, X.F. (2009) Protein phosphatase 2A-dependent dephosphorylation of replication protein A is required for the repair of DNA breaks induced by replication stress. Mol. Cell Biol. 29:5696-5709.

Chen, L.*, Nievera, C.*, Lee A. and Wu, X. (2008) Cell cycle-dependent complex formation of BRCA1/CtIP/Mre11-Rad50-Nbs1 is important for DNA double-strand break repair. J. Biol Chem. 283: 7713-7720. (*equal contribution)

Lee A.Y., Liu E. and Wu X. (2007) The Mre11/Rad50/Nbs1 complex plays an important role in the prevention of DNA rereplication in mammalian cells. J Biol Chem. 282: 32243-32255. 

Olson E., Nievera C.J., Liu E., Lee A.Y., Chen L. and Wu X. (2007) The Mre11 complex mediates the S-phase checkpoint through an interaction with RPA. Molecular and Cellular Biology 27: 6053-6067.

Liu E.*, Lee A.Y.*, Chiba T., Olson E. Sun P. and Wu X. (2007) ATR-mediated S-phase checkpoint prevents DNA rereplication in mammalian cells when the licensing control is disrupted. Journal of Cell Biology 179: 643-657. (*equal contribution)

Olson E., Nievera C.J., Lee A.Y., Chen L. and Wu X. (2007) The Mre11 complex acts both upstream and downstream of ATR to regulate the S-phase checkpoint following UV treatment J Biol Chem. 282: 22939-22952.

Olson E., Nievera C. J., Klimovich V., Fanning E. and Wu X. (2006) RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem. 281: 39517-39533.

Wu, X.*, Avni, D., Chiba, T., Yan, F., Zhao, Q., Lin, Y., Heng, H.H.Q. and Livingston, D.M.* (2004) SV40 T antigen interacts with Nbs1 to disrupt DNA replication control.  Genes & Development 18:1305-1316.  *Corresponding authors.

Liu, E., Li, X., Yan, F., Zhao Q. and Wu, X. (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation.  J Biol Chem. 279: 17283-17288.

Li, X., Zhao, Q., Liao, R., Sun, P. and Wu, X. (2003) The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 278: 30854-30858.

Wu, X., Rathbun, G., Lane, W.S., Weaver, D.T. and Livingston, D.M. (2000) Communication of the Nijmegen Breakage Syndrome Protein with ATM and BRCA1. Cold Spring Harbor Symposia on Quantitative Biology LXV: 535-545.

Ranganathan, V. Heine, W.F., Ciccone, D.N., Rudolph, K.L., Wu, X., Chang, S., Hai, H., Ahearn, I.M., Livingston, D.M., Resnick, I., Rosen, F., Seemanova, E., Jarolim, P., Depinho, R.A. and Weaver, D.T. (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Current Biology 11:962-966.

Wu, X., Heine, W.F., Petrini, J.H.J., Weaver, D.T., Livingston, D.M. and Chen, J. (2000). Independence of Nbs1/Mre11/Rad50 nuclear focus formation and the presence of intact BRCA1. Science 289: 11 (website: www.sciencemag.org/cgi/content/full/289/5476/11a).

Wu, X., Ranganathan, V., Weisman, D.S., Heine, W.F., Ciccone, D.N., O’Neill, T.B., Crick, K.E., Pierce, K.A., Lane, W.S., Rathbun, G., Livingston, D.M. and Weaver, D.T. (2000). ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405: 477-482.

Wu, X., Wu, C. and Haber, J.E. (1997). Rules of donor preference in yeast mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147: 399-407.

Wu, X., Moore, J.K. and Haber, J.E. (1996). Mechanism of MATa donor preference during mating-type switching of Saccharomyces cerevisiae.  Molecular and Cellular Biology 16: 657-668.

Wu, X., Haber, J.E. (1996) A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87: 277-285.

Wu, X. and Haber, J.E. (1995).  MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination.  Genes & Development 9:1922-1932.

Sugawara, N., Ivanov, E.L., Fishman-Lobell, J., Ray, B.L., Wu, X., and Haber, J.E. (1995).  DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373: 84-86.