Deracemization and Related Processes

Kevin Wu 13 January 2019 Yu Group

Selective reaction with a prochiral, planar precursor is a common strategy in asymmetric catalysis:

Noyori, R.; Ohkuma, T. *Angew. Chem. Int. Ed.* **2001**, *40*, 40. Sharpless, K. B.; et al. *J. Org. Chem.* **1992**, *57*, 2768. List, B.; Lerner, R. A; Barbas, C. F. *J. Am. Chem. Soc.* **2000**, *122*, 2395.

Selective reaction with a prochiral, planar precursor is a common strategy in asymmetric catalysis:

Noyori, R.; Ohkuma, T. *Angew. Chem. Int. Ed.* **2001**, *40*, 40. Sharpless, K. B.; et al. *J. Org. Chem.* **1992**, *57*, 2768. List, B.; Lerner, R. A; Barbas, C. F. *J. Am. Chem. Soc.* **2000**, *122*, 2395.

Selective reaction with a prochiral, planar precursor is a common strategy in asymmetric catalysis:

Noyori, R.; Ohkuma, T. *Angew. Chem. Int. Ed.* **2001**, *40*, 40. Sharpless, K. B.; et al. *J. Org. Chem.* **1992**, *57*, 2768. List, B.; Lerner, R. A; Barbas, C. F. *J. Am. Chem. Soc.* **2000**, *122*, 2395.

Selective reaction with a prochiral, planar precursor is a common strategy in asymmetric catalysis:

List, B.; Lerner, R. A; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.

o(k)	$\Delta\Delta G^{\ddagger}$	Conversion (%) to achieve SM at:		
S (K _{rel})	(kcal/mol)	90% ee	98% ee	>99% ee
1.5	0.24	99.9	99.99	>99.999
2	0.41	97.2	99.5	>99.7
5	0.95	74.8	84.0	>86.6
10	1.35	62.1	69.7	>72.1
100	2.72	48.9	51.8	>52.4
500	3.66	47.7	50.0	>50.3

Kinetic resolution and dynamic kinetic resolutions also have been well-established:

$-(l_{\ell})$	$\Delta\Delta G^{\ddagger}$	Conversion (%) to achieve SM at:		
s (ĸ _{rel})	(kcal/mol)	90% ee	98% ee	>99% ee
1.5	0.24	99.9	99.99	>99.999
2	0.41	97.2	99.5	>99.7
5	0.95	74.8	84.0	>86.6
10	1.35	62.1	69.7	>72.1
100	2.72	48.9	51.8	>52.4
500	3.66	47.7	50.0	>50.3

In an ideal kinetic resolution (s is high) 50% of (S) will remain at 100% ee

Kinetic resolution and dynamic kinetic resolutions also have been well-established:

Hayashi, T.; Kumada, M.; et al. J. Am. Chem. Soc. 1982, 104, 180.
Cherney, A. H.; Kadunce, N.T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
Bhat, V.; Welin, E. R.; Guo, X.; Stotlz, B. M. Chem. Rev. 2017, 117, 4528.

Kinetic resolution and dynamic kinetic resolutions also have been well-established:

Hayashi, T.; Kumada, M.; et al. J. Am. Chem. Soc. 1982, 104, 180.
Cherney, A. H.; Kadunce, N.T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
Bhat, V.; Welin, E. R.; Guo, X.; Stotlz, B. M. Chem. Rev. 2017, 117, 4528.

rapid isomerization of diastereomeric η^3 complexes

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization Concepts: Application of Substrate Cycling

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization Concepts: Application of Substrate Cycling

Deracemization is inherently endothermic due to the decrease in entropy required:

Early examples typically used the oxidation/reduction cycling of alcohols or amines:

Turner, N. J.; et al. *Angew. Chem. Int. Ed.* **2002**, *41*, 3177. Kroutil, W.; Faber, K. *Tetrahedron: Asymmetry* **1998**, *9*, 2901.

Deracemization Concepts: Application of Substrate Cycling

Deracemization is inherently endothermic due to the decrease in entropy required:

Early examples typically used the oxidation/reduction cycling of alcohols or amines:

Kroutil, W.; Faber, K. Tetrahedron: Asymmetry 1998, 9, 2901.

Deracemization is inherently endothermic due to the decrease in entropy required:

Deracemization is inherently endothermic due to the decrease in entropy required:

The concept of substrate cycling has prompted numerous proposals using closed systems:

Deracemization is inherently endothermic due to the decrease in entropy required:

The concept of substrate cycling has prompted numerous proposals using closed systems:

Deracemization is inherently endothermic due to the decrease in entropy required:

The concept of substrate cycling has prompted numerous proposals using closed systems:

Experimental tests inevitably result in racemic mixtures

Deracemization is inherently endothermic due to the decrease in entropy required:

The concept of substrate cycling has prompted numerous proposals using closed systems:

Experimental tests inevitably result in racemic mixtures

- The positive ΔG of deracemization immediately shows these ideas are impossible
- Yet these proposals remained common

Deracemization is inherently endothermic due to the decrease in entropy required:

The concept of substrate cycling has prompted numerous proposals using closed systems:

Experimental tests inevitably result in racemic mixtures

- The positive ΔG of deracemization immediately shows these ideas are impossible
- Yet these proposals remained common
- To understand why such proposals are infeasible, the principle of microscopic reversibility must be considered

The principle of microscopic reversibility states:

- The principle of microscopic reversibility states:
 - At equilibrium, any molecular process and the reverse of that process occur at the same rate

- The principle of microscopic reversibility states:
 - At equilibrium, any molecular process and the reverse of that process occur at the same rate
 - Accordingly, the reaction path in the reverse must be the reverse of the forward reaction

- The principle of microscopic reversibility states:
 - At equilibrium, any molecular process and the reverse of that process occur at the same rate
 - Accordingly, the reaction path in the reverse must be the reverse of the forward reaction

Thus the reverse reaction of a catalytic step must proceed via the catalytic path:

- The principle of microscopic reversibility states:
 - At equilibrium, any molecular process and the reverse of that process occur at the same rate
 - Accordingly, the reaction path in the reverse must be the reverse of the forward reaction

Thus the reverse reaction of a catalytic step must proceed via the catalytic path:

The lowest path backward must always be identical to the lowest path forward

When considered from this perspective, the issue with closed system recycling is clear:

Attempts to recycle a catalytic reaction back by its uncatalyzed route clearly breaks the rules"

■ When considered from this perspective, the issue with closed system recycling is clear:

The energetics that favor the catalytic conversion of the undesired (R)-enantiomer also will favor its re-formation from the intermediate (if k_R is large, then k_{Rb} must also be)

The closed system will inexorably proceed towards equilibrium (racemization)

Deracemization: Overcoming the Limitations of Closed Systems

To overcome the limitation of a closed systems, a source of chemical or light energy is needed

$$\mathbb{R}$$
+ \mathbb{S} $\mathbb{Catalyst?}$ \mathbb{S} + \mathbb{S} $\Delta G = +0.42$ kcal/molracemic starting materials \mathbb{A} \mathbb{A}

Knowles, R. R.; et al. *Science* **2019**, *366*, 364. Blackmond, D. G. *Angew. Chem. Int. Ed.* **2009**, *48*, 2648.

Deracemization: Overcoming the Limitations of Closed Systems

To overcome the limitation of a closed systems, a source of chemical or light energy is needed

The principle of microscopic reversibility prohibits a single catalytic step from deracemizing a reaction

Two or more steps proceeding through distinct mechanisms are necessary

Deracemization: Overcoming the Limitations of Closed Systems

To overcome the limitation of a closed systems, a source of chemical or light energy is needed

The principle of microscopic reversibility prohibits a single catalytic step from deracemizing a reaction

- Two or more steps proceeding through distinct mechanisms are necessary
 - Chemical compatibility of reagents can be a challenge, especially in redox cycling
 - Temporal separation is one possible solution (stepwise reactions)
 - Photochemical methods would be ideal, but few candidate systems exist

Catalytic enantioselective reduction of imines with chiral phosphoric acids is well known:

Catalytic enantioselective reduction of imines with chiral phosphoric acids is well known:

Catalytic enantioselective reduction of imines with chiral phosphoric acids is well known:

The Toste group found CPAs can facilitate phase-transfer oxidation of indolines, with low selectivity

This phase transfer system appeared suited for a deracemization strategy:

This phase transfer system appeared suited for a deracemization strategy:

This phase transfer system appeared suited for a deracemization strategy:

However, no deuterium erosion (no reaction) was observed when the two cycles were combined:

While the two reagents were insoluble, they were consuming each other in the solid phase:

While the two reagents were insoluble, they were consuming each other in the solid phase:

Therefore, a three-phase strategy (solid, organic, and aqueous) was devised:

Evaluation of several solvent mixtures as well as Hantzsch esters variants showed promise:

Evaluation of several solvent mixtures as well as Hantzsch esters variants showed promise:

entry	Hantzsch Ester	solvent	additive	H incorp (%)	ee	_
1	1a	PhMe	-	0	0	
2	1a	1:1 PhMe/H ₂ O	-	5	4	
3	1a	9:1:10 Hex/Et ₂ O/H ₂ O	-	68	67	
4	1a	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	84	81	Me ^r N Me H
5	1b	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	56	56	1a: R = Et 1b: R = Bn 1c: R = 4-CIBn

Lackner, A. D.; Samant; A. V.; Toste, F. D. J. Am Chem Soc. 2013, 135, 14090.

1d: R = 2,6-Cl₂Bn

Evaluation of several solvent mixtures as well as Hantzsch esters variants showed promise:

entry	Hantzsch Ester	solvent	additive	H incorp (%)	ee	_
1	1a	PhMe	-	0	0	-
2	1a	1:1 PhMe/H ₂ O	-	5	4	$RO_2C \xrightarrow{H} H CO_2R$
3	1a	9:1:10 Hex/Et ₂ O/H ₂ O	-	68	67	
4	1a	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	84	81	Me ^r N Me H
5	1b	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	56	56	1a: R = Et
6	1c	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	97	92	1b: R = Bn
7	1d (1.5 eq)	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	96	92	1c: R = 4-CIBn 1d: R = 2,6-Cl ₂ Bn

Evaluation of several solvent mixtures as well as Hantzsch esters variants showed promise:

entry	Hantzsch Ester	solvent	additive	H incorp (%)	ee	
1	1a	PhMe	-	0	0	$RO_{2}C \xrightarrow{H} H CO_{2}R$ $Me \xrightarrow{N} H Me$
2	1a	1:1 PhMe/H ₂ O	-	5	4	
3	1a	9:1:10 Hex/Et ₂ O/H ₂ O	-	68	67	
4	1a	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	84	81	
5	1 b	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	56	56	1a: R = Et
6	1c	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	97	92	1b: R = Bn
7	1d (1.5 eq)	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	96	92	1c: R = 4-CIBn
8	1d (1.5 eq)	9:1:10 Hex/Et ₂ O/H ₂ O	HCI	98	94	Ta: $R = 2,6-Cl_2Bh$

The racemization of axially chiral allenes via a triplet state is well known:

Rodriguez, O.; Morrison, H. *Chem. Comm. D.* **1971**, *373*, 679. Bach, T.; et al. *Nature* **2018**, *564*, 240.

The racemization of axially chiral allenes via a triplet state is well known:

The racemization of axially chiral allenes via a triplet state is well known:

■ In the presence of a chiral sensitizer, this process could be used to drive **deracemization**

Rodriguez, O.; Morrison, H. *Chem. Comm. D.* **1971**, *373*, 679. Bach, T.; et al. *Nature* **2018**, *564*, 240.

The racemization of axially chiral allenes via a triplet state is well known:

■ In the presence of a chiral sensitizer, this process could be used to drive deracemization

Rodriguez, O.; Morrison, H. *Chem. Comm. D.* **1971**, *373*, 679. Bach, T.; et al. *Nature* **2018**, *564*, 240.

This transformation is a variant of the recycling concept, but with the diradical as intermediate:

This transformation is a variant of the recycling concept, but with the diradical as intermediate:

Light (the source of energy) and a chiral catalyst selectively form a high energy intermediate that non-selectively recycles to the racemic substrate:

Bach had developed an enantioselective H-bonding photosensitizer for single electron transfer:

Bach had developed an enantioselective H-bonding photosensitizer for single electron transfer:

Bach had developed an enantioselective H-bonding photosensitizer for single electron transfer:

Bach had developed an enantioselective H-bonding photosensitizer for single electron transfer:

H-bonding holds the substrate near the sensitizer, promoting the key SET in a chiral environment

Bach had developed an enantioselective H-bonding photosensitizer for single electron transfer:

H-bonding holds the substrate near the sensitizer, promoting the key SET in a chiral environment

Allene Deracemization: Reaction Design

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Allene Deracemization: Reaction Design

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Bach, T.; et al. Nature 2018, 564, 240.

Allene Deracemization: Reaction Design

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Allene Deracemization: Reaction Design and Implementation

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Allene Deracemization: Reaction Design and Implementation

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Irradiating either enantiomer with catalyst results in rapid formation of the preferred enantiomer:

Allene Deracemization: Substrate Scope

The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Deracemization of Ureas via Excited-State Electron Transfer

Knowles observed unexpected product enantioenrichment under PCET hydroamination conditions

Deracemization of Ureas via Excited-State Electron Transfer

Knowles observed unexpected product enantioenrichment under PCET hydroamination conditions

Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492. Knowles, R. R.; et al. Science 2019, 366, 364.

The potential for a deracemization approach was then recognized:

The potential for a deracemization approach was then recognized:

The potential for enantioselective HAT to regenerate the substrate was also recognized :

Knowles observed unexpected product enantioenrichment under PCET hydroamination conditions

Deracemization of Ureas: Catalyst Evaluation

Use of a chiral phosphate and chiral thiol together gave the highest selectivity

Deracemization of Ureas: Catalyst Evaluation

Use of a chiral phosphate and chiral thiol together gave the highest selectivity

Deracemization of Ureas: Catalyst Evaluation

Use of a chiral phosphate and chiral thiol together gave the highest selectivity

Deracemization of Ureas: Stereoinversion

This system was also capable of performing selective stereoinversion:

Deracemization of Ureas: Stereoinversion

This system was also capable of performing selective stereoinversion:

Deracemization has recently seen increased activity as a field of asymmetric catalysis

Deracemization has recently seen increased activity as a field of asymmetric catalysis

Light is a particularly promising energy source to drive selective formation of a single enantiomer

Deracemization has recently seen increased activity as a field of asymmetric catalysis

Light is a particularly promising energy source to drive selective formation of a single enantiomer

Deracemization has recently seen increased activity as a field of asymmetric catalysis

Light is a particularly promising energy source to drive selective formation of a single enantiomer

- Deracemization has recently seen increased activity as a field of asymmetric catalysis
- Light is a particularly promising energy source to drive selective formation of a single enantiomer
- Considerable limitations remain with regards to substrate scope and synthetic utility

- Deracemization has recently seen increased activity as a field of asymmetric catalysis
- Light is a particularly promising energy source to drive selective formation of a single enantiomer
- Considerable limitations remain with regards to substrate scope and synthetic utility
- However, further study of system and catalyst design may result in more practical systems:

