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Deracemization: A Common Pitfall

 Deracemization is inherently endothermic due to the decrease in entropy required:

 The concept of substrate cycling has prompted numerous proposals using closed systems:

Experimental tests inevitably result in racemic mixtures 

 The positive ΔG of deracemization immediately shows these 

ideas are impossible

 Yet these proposals remained common

 To understand why such proposals are infeasible, the 

principle of microscopic reversibility must be considered

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648. 

Kroutil, W.; Faber, K. Tetrahedron: Asymmetry 1998, 9, 2901.
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 The principle of microscopic reversibility states:

 At equilibrium, any molecular process and the reverse of that process occur at the same rate

 Accordingly, the reaction path in the reverse must be the reverse of the forward reaction

 Thus the reverse reaction of a catalytic step must proceed via the catalytic path:

The lowest path backward must always 

be identical to the lowest path forward
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Deracemization: Applying the Principle of Microscopic Reversibility

 When considered from this perspective, the issue with closed system recycling is clear:

 The energetics that favor the catalytic conversion of the undesired (R)-enantiomer also will favor its 

re-formation from the intermediate (if kR is large, then kRb must also be)

 The closed system will inexorably proceed towards equilibrium (racemization)

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648.
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Deracemization: Overcoming the Limitations of Closed Systems

 To overcome the limitation of a closed systems, a source of chemical or light energy is needed 

 The principle of microscopic reversibility prohibits a single catalytic step from deracemizing a 

reaction

 Two or more steps proceeding through distinct mechanisms are necessary

 Chemical compatibility of reagents can be a challenge, especially in redox cycling

 Temporal separation is one possible solution (stepwise reactions)

 Photochemical methods would be ideal, but few candidate systems exist

Knowles, R. R.; et al. Science 2019, 366, 364.  

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648.
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The Toste group found CPAs can facilitate phase-transfer oxidation of indolines, with low selectivity  
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Deracemization: Phase Separation and Chemical Energy

 This phase transfer system appeared suited for a deracemization strategy:

 However, no deuterium erosion (no reaction) was observed when the two cycles were combined:

Lackner, A. D.; Samant; A. V.; Toste, F. D. J. Am Chem Soc. 2013, 135, 14090.
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 While the two reagents were insoluble, they were consuming each other in the solid phase:

 Therefore, a three-phase strategy (solid, organic, and aqueous) was devised:
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 The racemization of axially chiral allenes via a triplet state is well known:

 In the presence of a chiral sensitizer, this process could be used to drive deracemization

Continuous cycling of substrate will lead to accumulation of (S) 
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Deracemization: Photochemical excitation of axially chiral molecules

Bach, T.; et al. Nature 2018, 564, 240.

 This transformation is a variant of the recycling concept, but with the diradical as intermediate:

 Light (the source of energy) and a chiral catalyst selectively form a high energy intermediate that 

non-selectively recycles to the racemic substrate:
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 Irradiating either enantiomer with catalyst results in rapid formation of the preferred enantiomer:

Bach, T.; et al. Nature 2018, 564, 240.



 The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes
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Conclusion

 Deracemization has recently seen increased activity as a field of asymmetric catalysis

 Light is a particularly promising energy source to drive selective formation of a single enantiomer

 Considerable limitations remain with regards to substrate scope and synthetic utility

 However, further study of system and catalyst design may result in more practical systems:


