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 The concept of substrate cycling has prompted numerous proposals using closed systems:

Experimental tests inevitably result in racemic mixtures 

 The positive ΔG of deracemization immediately shows these 

ideas are impossible

 Yet these proposals remained common

 To understand why such proposals are infeasible, the 

principle of microscopic reversibility must be considered

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648. 

Kroutil, W.; Faber, K. Tetrahedron: Asymmetry 1998, 9, 2901.
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Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648.

 The principle of microscopic reversibility states:

 At equilibrium, any molecular process and the reverse of that process occur at the same rate

 Accordingly, the reaction path in the reverse must be the reverse of the forward reaction

 Thus the reverse reaction of a catalytic step must proceed via the catalytic path:

The lowest path backward must always 

be identical to the lowest path forward
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Deracemization: Applying the Principle of Microscopic Reversibility

 When considered from this perspective, the issue with closed system recycling is clear:

 The energetics that favor the catalytic conversion of the undesired (R)-enantiomer also will favor its 

re-formation from the intermediate (if kR is large, then kRb must also be)

 The closed system will inexorably proceed towards equilibrium (racemization)

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648.
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 To overcome the limitation of a closed systems, a source of chemical or light energy is needed 

 The principle of microscopic reversibility prohibits a single catalytic step from deracemizing a 

reaction

 Two or more steps proceeding through distinct mechanisms are necessary

 Chemical compatibility of reagents can be a challenge, especially in redox cycling

 Temporal separation is one possible solution (stepwise reactions)

 Photochemical methods would be ideal, but few candidate systems exist

Knowles, R. R.; et al. Science 2019, 366, 364.  

Blackmond, D. G. Angew. Chem. Int. Ed. 2009, 48, 2648.
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Lackner, A. D.; Samant; A. V.; Toste, F. D. J. Am Chem Soc. 2013, 135, 14090.

 Catalytic enantioselective reduction of imines with chiral phosphoric acids is well known:

The Toste group found CPAs can facilitate phase-transfer oxidation of indolines, with low selectivity  
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 This phase transfer system appeared suited for a deracemization strategy:

 However, no deuterium erosion (no reaction) was observed when the two cycles were combined:

Lackner, A. D.; Samant; A. V.; Toste, F. D. J. Am Chem Soc. 2013, 135, 14090.
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Deracemization: Phase Separation and Chemical Energy

 While the two reagents were insoluble, they were consuming each other in the solid phase:

 Therefore, a three-phase strategy (solid, organic, and aqueous) was devised:

Lackner, A. D.; Samant; A. V.; Toste, F. D. J. Am Chem Soc. 2013, 135, 14090.
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 The racemization of axially chiral allenes via a triplet state is well known:

 In the presence of a chiral sensitizer, this process could be used to drive deracemization

Continuous cycling of substrate will lead to accumulation of (S) 
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Deracemization: Photochemical excitation of axially chiral molecules

Bach, T.; et al. Nature 2018, 564, 240.

 This transformation is a variant of the recycling concept, but with the diradical as intermediate:

 Light (the source of energy) and a chiral catalyst selectively form a high energy intermediate that 

non-selectively recycles to the racemic substrate:
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 The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Allene Deracemization: Reaction Design and Implementation

 Irradiating either enantiomer with catalyst results in rapid formation of the preferred enantiomer:

Bach, T.; et al. Nature 2018, 564, 240.



 The concept of hydrogen-bonding chiral recognition could be used to selectively sensitize allenes

Allene Deracemization: Substrate Scope

Bach, T.; et al. Nature 2018, 564, 240.
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Conclusion

 Deracemization has recently seen increased activity as a field of asymmetric catalysis

 Light is a particularly promising energy source to drive selective formation of a single enantiomer

 Considerable limitations remain with regards to substrate scope and synthetic utility

 However, further study of system and catalyst design may result in more practical systems:


