Scripps Florida Logo


[Last update:  July 10, 2018]

[122] Chang, J., Peng, H., Shaffer, B. C., Baskar, S., Wecken, I. C., Cyr, M. G., Martinez, G. J., Soden, J., Freeth, J., Wiestner, A., and Rader, C.* (2018). Siglec-6 on chronic lymphocytic leukemia cells is a target for post-allogeneic hematopoietic stem cell transplantation antibodies. Cancer Immunol. Res. in press. [Epub ahead of print]

[121] Wallstabe, L., Mades, A., Frenz, S., Einsele, H., Rader, C., and Hudecek, M. (2018). CAR T cells targeting αvβ3 integrin are effective against advanced cancer in preclinical models. Adv. Cell Gene Ther. in press. [Epub ahead of print]

[120] Qi, J., Li, X., Peng, H., Cook, E., Dadashian, E., Wiestner, A., Park, H, and Rader, C.* (2018). Potent and selective antitumor activity of a T-cell engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proc. Natl. Acad. Sci. U.S.A. in press. [Epub ahead of print]

[119] Robinson, H., Qi, J., Cook, E., Nichols, C., Dadashian, E., Underbayev, C. Sarah E.M. Herman, S. E. M., Saba, N. S., Keyvanfar, K., Sun, C., Ahn, I. E., Baskar, S., Rader, C., and Wiestner, A. (2018). A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood in press. [Epub ahead of print]

[118] Yan, X., Chen, J. J., Adhikari, A., Yang, D., Crnovčić, I., Wang, N., Chang, C. Y., Rader, C., and Shen, B. (2017). Genome mining of micromonospora yangpuensis DSM 45577 as a producer of an anthraquinone-fused enediyne. Org. Lett. 19, 6192-6195.

[117] Nanna, A. R., Li, X., Walseng, E., Pedzisa, L., Goydel, R. S., Hymel, D., Burke, T. R. Jr., Roush, W. R.*, and Rader, C.* (2017). Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nat. Commun. 8, 1112.

[116] Zhuang, X., Watts, N. R., Palmer, I. W., Kaufman, J. D., Dearborn, A. D., Trenbeath, J. L., Eren, E., Steven, A. C., Rader, C., and Wingfield, P. T. (2017). Chimeric rabbit/human Fab antibodies against the hepatitis B e-antigen and their potential applications in assay, characterization and therapy. J. Biol. Chem. 292, 16760-16772.

[115] Peng, H., Nerreter, T., Chang, J., Qi, J., Li, X., Karunadharma, P., Martinez, G. J., Fallahi, M., Soden, J., Freeth, J., Beerli, R. R., Grawunder, U., Hudecek, M., and Rader, C.* (2017). Mining naïve rabbit antibody repertoires by phage display for monoclonal antibodies of therapeutic utility. J. Mol. Biol. 429, 2954-2973.

[114] Nanna, A. R., Roush, W. R., and Rader, C.* (2017). Chemical assembly of antibody-drug conjugates.  In Next Generation Antibody Drug Conjugates and Immunotoxins (eds. Grawunder, U. and Barth, S.), pp. 1-28, Springer Milestones in Drug Therapy

[113] Li, X., Nelson, C. G., Nair, R. R., Hazlehurst, L., Moroni, T., Martinez-Acedo, P., Nanna, A. R., Hymel, D., Burke, T. R. Jr., and Rader, C.* (2017). Stable and potent selenomab-drug conjugates. Cell Chem. Biol. 24, 433-442.

[112] Weber, J., Peng, H, and Rader, C.* (2017). From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp. Mol. Med. 49, e305.

[111] Moreadith, R. W., Viegas, T. X., Bentley, M. D., Harris, J. M., Fang, Z., Yoon, K., Dizman, B., Weimer, R., Rae, B. P., Li, X., Rader, C., Standaert, D., and Olanow, W. (2017). Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 88, 524-552.

[110] Li, X., and Rader, C.* (2017). Ultilization of selenocysteine for site-specific antibody conjugation. Methods Mol. Biol. 1575, 145-164.

[109] Yan X., Ge, H., Huang, T., Hindra, Yang, D., Teng, Q., Crnovčić, I., Li, X., Rudolf, J. D., Lohman, J. R., Gansemans, Y., Zhu, X., Huang, Y., Zhao, L. X., Jiang, Y., Van Nieuwerburgh, F., Rader, C., Duan, Y., and Shen, B. (2016). Strain prioritization and genome mining for enediyne natural products. mBio 7, e02104-16.

[108] Patterson, J. T.*, Wilson, H. D., Asano, S., Nilchan, N., Fuller, R. P., Roush, W. R., Rader, C.*, and Barbas, C. F. III. (2016). Human serum albumin domain I fusion protein for antibody conjugation. Bioconjug. Chem. 27, 2271-2275.

[107] Gnaim, S., Scomparin, A., Li, X., Baran, P. S., Rader, C., Satchi-Fainaro, R., and Shabat, D. (2016). Tagging the untaggable: a difluoroalkyl-sulfinate ketone-based reagent for direct C-H functionalization of bioactive heteroarenes. Bioconjug. Chem. 27, 1965-1971.

[106] Walseng, E., Nelson, C. G., Qi, J., Nanna, A. R., Roush, W. R., Goswami, R. K., Sinha, S. C., Burke, T. R. Jr., and Rader, C.* (2016). Chemically programmed bispecific antibodies in diabody format. J. Biol. Chem. 291, 19661-19673.

[105] Pedzisa, L., Li, X., Rader, C., and Roush, W. R. (2016). A survey of reagents for selenocysteine conjugation and the stability of resulting selenocysteine adducts. Org. Biomol. Chem. 14, 5141-5147.

[104] Li, W., Li, X., Huang, T., Teng, Q., Crnovčić, I., Rader, C., and Shen, B. (2016). Engineered production of cancer targeting peptide (CTP)-containing C-1027 in Streptomyces globisporus and biological evaluation. Bioorg. Med. Chem. 24, 3887-3892.

[103] Sarkar, M., Liu, Y., Qi, J., Peng, H., Morimoto, J., Rader, C., Chiorazzi, N., and Kodadek, T. (2016). Targeting stereotyped B cell receptors from chronic lymphocytic leukemia patients with synthetic antigen surrogates. J. Biol. Chem. 291, 7558-7570.

[102] Li, X., Patterson, J. T., Sarkar, M., Pedzisa, L., Kodadek, T., Roush, W. R., and Rader, C.* (2015). Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues. Bioconjug. Chem. 26, 2243-2248.

[101] Ma, M., Rateb, M. E., Teng, Q., Yang, D., Rudolf, J. D., Zhu, X., Huang, Y., Zhao, L. X., Jiang, Y., Li, X., Rader, C., Duan, Y., and Shen, B. (2015). Angucyclines and angucyclinones from Streptomyces sp. CB01913 featuring C-ring cleavage and expansion. J. Nat. Prod. 78, 2471-2480.

[100] Huang, X., Park, H., Greene, J., Pao, J., Mulvey, E., Zhou, S. X., Albert, C. M., Moy, F., Sachdev, D., Yee, D., Rader, C., Hamby, C. V., Loeb, D. M., Cairo, M. S., and Zhou X. (2015). IGF1R- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One 14, e0133152.

[99] Mani, R., Chiang, C. L., Frissora, F. W., Yan, R., Mo, X., Baskar, S., Rader, C., Klisovic, R., Phelps, M. A., Chen, C. S., Lee, R. J., Byrd, J. C., Baiocchi, R., Lee, L. J., and Muthusamy, N. (2015). ROR1-targeted delivery of OSU-2S, a nonimmunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle-cell lymphoma in vitro and in vivo. Exp. Hematol. 43, 770-774.

[98] Chinthalapudi, K., Patil, D. N., Rangarajan, E. S., Rader, C., and Izard, T. (2015). Lipid-directed vinculin dimerization. Biochemistry 54, 2758-2768.

[97] Rader, C.* (2015). How to minimalize antibodies. Nature 518, 38-39.

[96] Berger, C., Sommermeyer, D., Hudecek, M., Berger, M., Balakrishnan, A., Paszkiewicz, P. J., Kosasih, P. L., Rader, C., and Riddell, S. R. (2015). Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol. Res. 3, 206-216.

[95] Hudecek, M., Sommermeyer, D., Kosasih, P. L., Silva-Benedict, A., Liu, L., Rader, C., Jensen, M. C., and Riddell, S. R. (2015). The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125-135.

[94] Mani, R., Mao, Y., Frissora, F. W., Chiang, C. L., Wang, J., Zhao, Y., Wu, Y., Yu, B., Yan, R., Mo, X., Yu, L., Flynn, J., Jones, J., Andritsos, L., Baskar, S., Rader, C., Phelps, M. A., Chen, C. S., Lee, R. J., Byrd, J. C., Lee, L. J., and Muthusamy, N (2015). Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B cell cytotoxicity in chronic lymphocytic leukemia. Leukemia 29, 346-355.

[93] Vire, B., Skarzynski, M., Thomas, J. D., Nelson, C. G., David, A., Aue, G., Burke, T. R., Jr., Rader, C.*, and Wiestner, A.* (2014) Harnessing the Fcμ receptor for potent and selective cytotoxic therapy of chronic lymphocytic leukemia. Cancer Res. 74, 7510-7520.

[92] Sarkar, M., Liu, Y., Morimoto, J., Peng, H., Aquino, C., Rader, C., Chiorazzi, N., and Kodadek, T. (2014). Recognition of antigen-specific B-cell receptors from Chronic Lymphocytic Leukemia patients by synthetic antigen surrogates. Chem. Biol. 21, 1670-1679.

[91] Rader, C.*, Segal, D. J.*, and Shabat, D.* (2014). Carlos F. Barbas III (1964-2014): Visionary at the interface of chemistry and biology. ACS Chem. Biol. 9, 1645-1646.

[90] Patterson, J. T., Asano, S., Li, X., Rader, C.*, and Barbas, C. F. III* (2014). Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug. Chem.  25, 1402–1407.

[89] Grönwall, C., Charles, E. D., Dustin, L. B., Rader, C., and Silverman, G. J. (2014). Selection of apoptotic cell specific human antibodies from adult bone marrow. PLoS One 9, e95999.

[88] Rader, C.* (2014). Chemically programmed antibodies. Trends Biotechnol. 32, 186-197.

[87] Li, X., Yang, J., and Rader, C.* (2014). Antibody conjugation via one and two C-terminal selenocysteines. Methods 65, 133-138.

[86] Stoeckli, E. T., Kilinc, D., Kunz, B., Kunz, S., Lee, G. U., Martines, E., Rader, C., and Suter, D. (2013). Analysis of cell-cell contact mediated by Ig superfamily adhesion molecules. Curr. Protoc. Cell Biol., pp. 9.5.1-9.5.85.

[85] Hudecek, M., Lupo Stanghellini, M. T., Kosasih, P. L., Sommermeyer, D., Jensen, M. C., Rader, C., and Riddell S. R. (2013). Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T-cells. Clin. Cancer Res. 19, 3153-3164.

[84] Dave, H., Anver, M. R., Butcher, D. O., Brown, P., Khan, J., Wayne, A. S., Baskar, S., and Rader, C.* (2012). Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies. PLoS One 7, e52655.

[83] Thomas, J. D., Cui, H., North, P. J., Rader, C., and Burke, T. R., Jr. (2012). Application of strain-promoted azide-alkyne cycloaddition and tetrazine ligation to targeted Fc-drug conjugates. Bioconjug. Chem. 23, 2007-2013.

[82] Cui, H., Thomas, J. D., Burke, T. R., Jr., and Rader, C.* (2012). Chemically programmed bispecific antibodies that recruit and activate T cells. J. Biol. Chem. 287, 28206-28214.

[81] Yang, J., and Rader, C.* (2012). Cloning, expression, and purification of monoclonal antibodies in scFv-Fc format. Methods Mol. Biol. 901, 209-232.

[80] Rader, C.* (2012). Selection of human Fab libraries by phage display. Methods Mol. Biol. 901, 81-99.

[79] Rader, C.* (2012). Generation of human Fab libraries for phage display. Methods Mol. Biol. 901, 53-79.

[78] Baskar, S.*, Wiestner, A., Wilson, W. H., Pastan, I., and Rader, C.* (2012). Targeting malignant B cells with an immunotoxin against ROR1. mAbs 4, 349-361.

[77] Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., and Barbas, C. F. III (2011). Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. Cold Spring Harb. Protoc. pdb.prot065565.

[76] Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., and Barbas, C. F. III (2011). Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. Cold Spring Harb. Protoc. pdb.prot065573.

[75] Yang, J., Baskar, S., Kwong, K. Y., Kennedy, M. G., Wiestner, A., and Rader, C.* (2011). Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies. PLoS One 6, e21018.

[74] Bagnara, D., Kaufman, M. S., Calissano, C., Marsilio, S., Patten, P., Simone, R., Chum, P., Yan, X. J., Allen, S. L., Kolitz, J. E., Baskar, S., Rader, C., Mellstedt, H., Rabbani, H., Lee, A., Gregersen, P. K., Rai, K. R., and Chiorazzi, N. (2011) A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117, 5463-5472.

[73] Rader, C.* (2011). DARTs take aim at BiTEs. Blood 117, 4403-4404.

[72] Perez-Galan, P., Mora-Jensen, H., Weniger, M. A., Shaffer, A. L., III, Rizzatti, E. G., Chapman, C. M., Mo, C. C., Stennett, L. L., Rader, C., Liu, P., Raghavachari, N., Stetler-Stevenson, M., Yuan, C., Pittaluga, S., Maric, I., Dunleavy, K. M., Wilson, W. H., Staudt, L. M., and Wiestner, A. (2011). Bortezomib resistance in Mantle Cell Lymphoma is associated with plasmacytic differentiation. Blood 117, 542-552.

[71] Rader, C.* (2011).  Monoclonal Antibody Therapy for Cancer.  In Experimental and Applied Immunotherapy (eds. Medin, J. and Fowler, D.H.), pp. 59-83, Humana Press.

[70] Ho, M., Feng, M., Fisher, R. J., Rader, C., and Pastan, I. (2011). A novel high-affinity human monoclonal antibody to mesothelin. Int. J. Cancer 128, 2020-2030.

[69] Salerno, E., Yuan, Y., Scaglione, B. J., Marti, G., Jankovic, A., Mazzella, F., Laurindo, M. F., Despres, D., Baskar, S., Rader, C., and Raveche, E (2010). The New Zealand black mouse as a model for the development and progression of chronic lymphocytic leukemia. Cytometry B Clin. Cytom. 78, S98-109.

[68] Hudecek, M., Schmitt, T. M., Baskar, S., Lupo-Stanghellini, M. T., Nishida, T., Yamamoto, T. N., Bleakley, M., Turtle, C. J., Chang, W., Greisman, H. A., Wood, B., Maloney, D. G., Jensen, M. C., Rader, C., and Riddell, S. R. (2010). The B-cell tumor associated antigen ROR1 can be targeted with T-cells modified to express a ROR1-specific chimeric antigen receptor. Blood 116, 4532-4541.

[67] Beerli, R. R.*, and Rader, C.* (2010). Mining human antibody repertoires. mAbs 2, 365-378.

[66] Dimattia, M. A., Watts, N. R., Stahl, S. J., Rader, C., Wingfield, P. T., Stuart, D. I., Steven, A. C., and Grimes, J. M. (2010). Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. Proc. Natl. Acad. Sci. U. S. A. 107, 5810-5814.

[65]  Stahl, S. J., Watts, N. R., Rader, C., DiMattia, M. A., Mage, R. G., Palmer, I., Kaufman, J. D., Grimes, J. M., Stuart, D. I., Steven, A. C., and Wingfield, P. T. (2010) Generation and characterization of a chimeric rabbit/human Fab for co-crystallization of HIV-1 Rev. J. Mol. Biol. 397, 697-708.

[64] Lapalombella, R., Andritsos, L., Liu, Q., May, S. E., Browning, R., Pham, L. V., Blum, K. A., Blum, W., Ramanunni, A., Raymond, C. A., Smith, L. L., Lehman, A., Mo, X., Jarjoura, D., Chen, C. S., Ford, R., Jr., Rader, C., Muthusamy, N., Johnson, A. J., and Byrd, J. C. (2009). Lenalidomide treatment promotes CD154 expression on CLL cells and enhances production of antibodies by normal B Cells through a PI3-kinase dependent pathway. Blood 115, 2619-2629.

[63] Hofer, T., Skeffington, L. R., Chapman, C. M., and Rader, C.* (2009). Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48, 12047–12057.

[62] Baskar, S., Suschak, J. M., Samija, I., Srinivasan, R., Childs, R. W., Pavletic, S. Z., Bishop, M. R., and Rader, C.* (2009). A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display. Blood 114, 4494-4502.

[61] Derfuss, T., Parikh, K., Velhin, S., Braun, M., Mathey, E., Krumbholz, M., Kümpfel, T., Moldenhauer, A., Rader, C., Sonderegger, P., Pöllmann, W., Tiefenthaller, C., Bauer, J., Lassmann H., Wekerle, H., Karagogeos, D., Hohlfeld, R., Linington, C., and Meinl, E. (2009). Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl. Acad. Sci. U. S. A. 106, 8302-8307.

[60] Robak, L. A., Venkatesh, K., Lee, H., Raiker, S. J., Duan, Y., Lee-Osbourne, J., Hofer, T., Mage, R. G., Rader, C., and Giger, R. J. (2009). Molecular basis of the interactions of the Nogo-66 receptor and Its homolog NgR2 with myelin-associated glycoprotein:  Development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J. Neurosci. 29, 5768-5788.

[59] Rader, C.* (2009). Generation and selection of rabbit antibody libraries by phage display.  Methods Mol. Biol. 525, 101-128.

[58] Kwong, K. Y., and Rader, C.* (2009). E. coli expression and purification of Fab antibody fragments. Curr. Protoc. Protein Sci. pp. 6.10.1-6.10.14.

[57] Rader, C.* (2009). Overview on concepts and applications of Fab antibody fragments.  Curr. Protoc. Protein Sci. pp. 6.9.1-6.9.14.

[56] Kwong, K. Y., Baskar, S., Zhang, H., Mackall, C. L., and Rader, C.* (2008). Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. J. Mol. Biol. 384, 1143-1156.

[55] Thomas, J. D., Hofer, T., Rader, C., and Burke, T. R., Jr. (2008). Application of a trifunctional reactive linker for the construction of antibody-drug hybrid conjugates. Bioorg. Med. Chem. Lett. 18, 5785-5788.

[54] Hofer, T., Thomas, J. D., Burke, T. R., Jr., and Rader, C.* (2008). An engineered selenocysteine defines a unique class of antibody derivatives. Proc. Natl. Acad. Sci. U. S. A. 105, 12451-12456.

[53] Giger, R. J., Venkatesh, K., Chivatakarn, O., Raiker, S. J., Robak, L., Hofer, T., Lee, H., and Rader, C. (2008). Mechanisms of CNS myelin inhibition: Evidence for distinct and neuronal cell type specific receptor systems. Restor. Neurol. Neurosci. 26, 97-115.

[52] Baskar, S., Kwong, K. Y., Hofer, T., Levy, J. M., Kennedy, M. G., Lee, E., Staudt, L. M., Wilson, W. H., Wiestner, A., and Rader, C.* (2008). Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 14, 396-404.

[51] Rader, C.*, and Bishop, M. R.* (2007). Monoclonal antibodies in cancer therapy. In General Principles of Tumor Immunotherapy: Basic and Clinical Applications of Tumor Immunology (editors H. L. Kaufman and J. D. Wolchok), pp. 453-484, Springer.

[50] Abraham, S., Guo, F., Li, L.-S., Rader, C., Liu, C., Barbas, C. F., III, Lerner, R. A., and Sinha, S. C. (2007). Synthesis of the next-generation therapeutic antibodies that combine cell targeting and antibody-catalyzed prodrug activation. Proc. Natl. Acad. Sci. U. S. A. 104, 5584-5589.

[49] Hofer, T., Tangkeangsirisin, W., Kennedy, M. G., Mage, R. G., Raiker, S. J., Venkatesh, K., Lee, H., Giger, R. J., and Rader, C.* (2007). Chimeric rabbit/human Fab and IgG specific for members of the Nogo-66 receptor family selected for species cross-reactivity with an improved phage display vector. J. Immunol. Methods 318, 75-87.

[48] Rader, C.*, and Barbas, C. F., III* (2006). Synthetic antibodies prey on B cells. Blood 108, 2989-2990.

[47] Popkov, M., Rader, C., Gonzalez, B., Sinha, S. C., and Barbas, C. F., III (2006). Small molecule drug activity in melanoma models may be dramatically enhanced with an antibody effector. Int. J. Cancer 119, 1194-1207.

[46] Nathan, S., Rader, C., and Barbas, C. F., III (2005). Neutralization of Burkholderia pseudomallei protease by Fabs generated through phage display. Biosci. Biotechnol. Biochem. 69, 2302-2311.

[45] Jendreyko, N., Popkov, M., Rader, C., and Barbas, C. F., III (2005). Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 8293-8298.

[44] Popkov, M., Jendreyko, N., McGavern, D. B., Rader, C., and Barbas, C. F., III (2005). Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2. Cancer Res. 65, 972-981.

[43] Venkatesh, K., Chivatakarn, O., Lee, L., Joshi, P. S., Kantor, D. B., Newman, B. A., Mage, R. G., Rader, C., and Giger, R. J. (2005). The Nogo-66 receptor homologue NgR2 is a sialic acid-dependent receptor selective for Myelin Associated Glycoprotein. J. Neurosci. 25, 808-822.

[42] Sinha, S. C., Li, L.-S., Watanabe, S., Kaltgrad, E., Tanaka, F., Rader, C., Lerner, R. A., and Barbas, C. F., III (2004). Aldolase antibody activation of prodrugs of potent aldehyde-containing cytotoxics for selective chemotherapy. Chemistry 10, 5467-5472.

[41] Li, L-S., Rader, C., Matsushita, M., Barbas, C. F., III, Lerner, R. A., and Sinha, S. C. (2004). Chemical adaptor immunotherapy: design, synthesis and evaluation of novel integrin-targeting devices. J. Med. Chem. 47, 5630-5640.

[40] Popkov, M., Rader, C., and Barbas, C. F., III (2004). Isolation of human prostate cancer cell reactive antibodies using phage display technology. J. Immunol. Methods 291,137-151.

[39] Popkov, M., Jendreyko, N., Gonzalez-Sapienza, G., Mage, R. G., Rader, C., and Barbas, C. F., III (2004). Human/mouse cross-reactive anti-VEGF receptor 2 recombinant antibodies selected from an immune b9 allotype rabbit antibody library. J. Immunol. Methods 288, 149-164.

[38] Gopin, A., Rader, C., and Shabat, D. (2004). New chemical adaptor unit designed to release a drug from a tumor targeting device by enzymatic triggering. Bioorg. Med. Chem. 12, 1853-1858.

[37] Sinha, S. C., Li, L-S., Miller, G. P., Dutta, S., Rader, C., and Lerner, R. A. (2004). New prodrugs of dynemicin analogs for selective chemotherapy mediated by an aldolase catalytic antibody. Proc. Natl. Acad. Sci. U. S. A. 101, 3095-3099.

[36] Chung, J., Rader, C., Popkov, M., Hur, Y-M., Kim, H-K., Lee, Y-J., and Barbas, C. F., III (2004). Integrin aIIb3-specific synthetic human monoclonal antibodies and HCDR3 peptides that potently inhibit platelet aggregation. FASEB J. 18, 361-363.

[35] Jendreyko, N., Popkov, M., Beerli, R. R., Chung, J., McGavern, D. B., Fuller, R., Rader, C.*, and Barbas, C. F., III* (2003). Intradiabodies, bispecific, tetravalent antibodies for the simultaneous functional knockout of two cell surface receptors. J. Biol. Chem. 278, 47812-47819.

[34] Rader, C.*, Turner, J. M., Heine, A., Shabat, D., Sinha, S. C., Wilson, I. A., Lerner, R. A., and Barbas, C. F., III* (2003). A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy. J. Mol. Biol. 332, 889-99.

[33] Rader, C., Sinha, S. C., Popkov, M., Lerner, R. A., and Barbas, C. F., III (2003). Chemically programmed monoclonal antibodies for cancer therapy: Adaptor immunotherapy based on a covalent antibody catalyst. Proc. Natl. Acad. Sci. U. S. A. 100, 5396-4000.

[32] Gopin, A., Pessah, N., Shamis, M., Rader, C., and Shabat, D. (2003). A chemical adaptor system designed to link a tumor targeting device with a prodrug and an enzymatic trigger. Angew. Chem. Int. Ed. 42, 327-332.

[31] Popkov, M., Mage, R. G.*, Alexander, C. B., Thundivalappil, S., Barbas, C. F., III*, and Rader, C.* (2003). Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: The impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. J. Mol. Biol. 325, 325-335.

[30] Rader, C., Popkov, M., Neves, J. A., and Barbas, C. F., III (2002). Integrin avb3-targeted therapy for Kaposi’s sarcoma with an in vitro-evolved antibody. FASEB J. 16, 2000-2002.

[29] Kunz, B., Lierheimer, R., Rader, C., Spirig, M., Ziegler, U., and Sonderegger, P. (2002). Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction. J. Biol. Chem. 277, 4551-4557.

[28] Plagge, A., Sendtner-Voelderndorff, L., Sirim, P., Freigang, J., Rader, C., Sonderegger, P., and Brümmendorf, T. (2001). The contactin-related protein FAR-2 defines Purkinje cell clusters and labels subpopulations of climbing fibers in the developing cerebellum. Mol. Cell. Neurosci. 18, 91-107.

[27] Shabat, D., Lode, H. N., Pertl, U. Reisfeld, R. A., Rader, C., Lerner, R. A., and Barbas, C. F., III (2001). In vivo activity in a catalytic antibody-prodrug system: Antibody-catalyzed etoposide prodrug activation for selective chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 98, 7528-7533.

[26] Sonderegger, P., Kunz, S., Rader, C., Suter, D. M., and Stoeckli, E. T. (2001). Analysis of cell-cell contact mediated by Ig superfamily cell adhesion molecules. Curr. Protoc. Cell Biol., pp. 5.3.1-5.3.52.

[25] Rader, C.* (2001). Antibody libraries in drug and target discovery.  Drug Discov. Today 6, 36-43.

[24] Andris-Widhopf, J., Rader, C., and Barbas, C. F., III (2001). Generation of antibody libraries: Immunization, RNA preparation, and cDNA synthesis. In Phage Display, a Laboratory Manual (editors C. F. Barbas III et al.), pp. 8.1-8.18, Cold Spring Harbor Laboratory Press.

[23] Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., and Barbas, C. F., III (2001). Generation of antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. In Phage Display, a Laboratory Manual (editors C. F. Barbas III et al.), pp. 9.1-9.113, Cold Spring Harbor Laboratory Press.

[22] Rader, C., Steinberger, P., and Barbas, C. F., III (2001). Selection from antibody libraries. In Phage Display, a Laboratory Manual (editors C. F. Barbas III et al.), pp. 10.1-10.20, Cold Spring Harbor Laboratory Press.

[21] Steinberger, P., Rader, C., and Barbas, C. F., III (2001). Analysis of selected antibodies. In Phage Display, a Laboratory Manual (editors C. F. Barbas III et al.), pp. 11.1-11.24, Cold Spring Harbor Laboratory Press.

[20] Rader, C., and Barbas, C. F., III (2001). Antibody engineering. In Phage Display, a Laboratory Manual (editors C. F. Barbas III et al.), pp. 13.1-13.15, Cold Spring Harbor Laboratory Press.

[19] Steinberger, P., Sutton, J. K., Rader, C., Elia, M., and Barbas, C. F., III (2000). Generation and characterization of a recombinant human CCR5-specific antibody. A phage display approach for rabbit antibody humanization. J. Biol. Chem. 275, 36073-36078.

[18] Barbas, C. F., III, Rader, C., Segal, D. J., List, B., and Turner, J. M. (2000). From catalytic asymmetric synthesis to the transcriptional regulation of genes: in vivo and in vitro evolution of proteins. Adv. Protein Chem. 55, 317-366.

[17] Andris-Widhopf, J., Rader, C., Steinberger, P., Fuller, R., and Barbas, C. F., III (2000). Methods for the generation of chicken monoclonal antibody fragments by phage display. J. Immunol. Methods 242, 159-181.

[16] Rader, C., and List, B. (2000). Catalytic antibodies as magic bullets. Chemistry 6, 2091-2095.

[15] Fitzli, D., Stoeckli, E. T., Kunz, S., Siribour, K., Rader, C., Kunz, B., Kozlov, S. V., Buchstaller, A., Lane, R. P., Suter, D. M., Dreyer, W. J., and Sonderegger, P. (2000). A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J. Cell Biol. 149, 951-968.

[14] Rader, C., Ritter, G., Nathan, S., Elia, M., Gout, I., Jungbluth, A. A., Cohen, L. S., Welt, S., Old, L. J., and Barbas, C. F., III (2000). The rabbit antibody repertoire as novel source for the generation of therapeutic human antibodies. J. Biol. Chem. 275, 13668-13676.

[13] Karlstrom, A., Zhong, G. Rader, C., Larsen, N. A., Heine, A., Fuller, R., List, B., Tanaka, F., Wilson, I. A., Barbas, C. F., III, and Lerner, R. A. (2000). Using antibody catalysis to study the outcome of multiple evolutionary trials of a chemical task. Proc. Natl. Acad. Sci. U. S. A. 97, 3878-3883.

[12] Shabat, D.#Rader, C.#, List, B., Lerner, R. A., and Barbas, C. F., III (1999). Multiple event activation of a generic prodrug trigger by antibody catalysis. Proc. Natl. Acad. Sci. U. S. A. 96, 6925-6930. #Co-First Authors

[11] Kunz, S., Spirig, M., Ginsburg, C., Buchstaller, A., Berger, P., Lanz, R., Rader, C., Vogt, L., Kunz, B., and Sonderegger, P. (1998). Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J. Cell Biol. 143, 1673-1690.

[10] Sonderegger, P., Kunz, S., Rader, C., Buchstaller, A., Berger, P., Vogt, L., Kozlov, S. V., Ziegler, U., Kunz, B., Fitzli, D., and Stoeckli. E. T. (1998). Discrete clusters of axonin-1 and NgCAM at neuronal contact sites: facts and speculations on the regulation of axonal fasciculation. Prog. Brain Res. 117, 93-104.

[9] Rader, C., Cheresh, D. A., and Barbas, C. F., III (1998). A phage display approach for rapid antibody humanization: Designed combinatorial V gene libraries. Proc. Natl. Acad. Sci. U. S. A. 95, 8910-8915.

[8] Rader, C., and Sonderegger, P. (1998). Structural features of neural cell adhesion molecules belonging to the immunoglobulin superfamily. In Ig Superfamily Molecules in the Nervous System (editor P. Sonderegger), pp. 1-22, Harwood Academic Publishers.

[7] Rader, C., and Barbas, C. F., III (1997). Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503-508.

[6] Buchstaller, A., Kunz, S. Berger, P., Kunz, B., Ziegler, U., Rader, C., and Sonderegger, P. (1996). Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J. Cell Biol. 135, 1593-1608.

[5] Rader, C., Kunz, B., Lierheimer, R., Giger, R. J., Berger, P., Tittmann, P., Gross, H., and Sonderegger, P. (1996). Implications for the domain arrangement of axonin-1 derived from the mapping of its NgCAM binding site. EMBO J. 15, 2056-2068.

[4] Giger, R. J., Vogt, L., Zuellig, R. A., Rader, C., Henehan-Beatty, A., Wolfer, D. P., and Sonderegger, P. (1995). The gene of chicken axonin-1. Complete structure and analysis of the promoter. Eur. J. Biochem. 227, 617-628.

[3] Rader, C., Stoeckli, E. T., Ziegler, U., Osterwalder, T., Kunz, B., and Sonderegger, P. (1993). Cell-cell adhesion by homophilic interaction of the neuronal recognition molecule axonin-1. Eur. J. Biochem. 215, 133-141.

[2] Hasler, T. H., Rader, C., Stoeckli, E. T., Zuellig, R. A., and Sonderegger P. (1993). cDNA cloning, structural features, and eucaryotic expression of human TAG-1/axonin-1. Eur. J. Biochem. 211, 329-339.

[1] Zuellig, R. A., Rader, C., Schroeder, A., Kalousek, M. B., von Bohlen und Halbach, F., Osterwalder, T., Inan, C., Stoeckli, E. T., Affolter, H. U., Fritz, A., Hafen, E., and Sonderegger, P. (1992). The axonally secreted cell adhesion molecule axonin-1: Primary structure, immunoglobulin-like and fibronectin-type-III-like domains and glycosyl-phosphatidylinositol anchorage. Eur. J. Biochem. 204, 453-463.