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bstract

While dissociated, reaggregated cells and organotypic slice cultures are useful models for understanding brain development, they only partially
imic the processes and organization that exist in vivo. Towards bridging the gap between in vitro and in vivo paradigms, a method for culturing

ntact brain tissue was developed using whole cerebral cortical hemispheres in which the anatomical and cellular organization of nervous system
issue is preserved. Single, free-floating telencephalic hemispheres were dissected from embryonic mice and placed into defined culture medium
n an orbital shaker. Orbital shaking was necessary for optimal growth, and cortices grown under these conditions closely approximated in vivo
arameters of cell division, differentiation, migration and cell death for up to 24 h. In addition to wild-type cultures, the method was compatible

ith genetically altered tissues. One particular advantage of this method is its ability to reveal global anatomical alterations in the embryonic brain

ollowing exposure to soluble growth factors. This method should thus be helpful for assessing a wide range of soluble molecules for their systemic
ffects on the embryonic brain.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The size and shape of the cerebral cortex are determined dur-
ng neurogenesis, when cells undergo proliferation, differentia-
ion, migration and cell death in the developing brain (Caviness
t al., 1995; Haydar et al., 1999a,b; Pompeiano et al., 2000).
hese various neurogenic processes depend on local cellular

nteractions that are altered by the disruption of an intact cen-
ral nervous system (Bittman et al., 1997; Linden et al., 1999;

urciano et al., 2002).
Dissociated, reaggregated embryonic brain cells and organ-

typic slice cultures are simple models for understanding

erebral cortical development (Berglund et al., 2004; Ghosh et
l., 1994; Haydar et al., 1999a,b). While these systems allow
or precise control of culture conditions, they do not retain the
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patial organization of the brain, and consequently, they only
artially mimic the underlying neurogenic processes that occur
n vivo. Here, the potential use of cultured whole cerebral cortex
emispheres was explored for studying mechanisms dependent
n the anatomical organization of the nervous system. This
odel takes advantage of the controlled environment of in

itro systems while preserving the integrity of cerebral cortical
issue.

In 1961, Moscona described the use of gyratory rotation
or culturing suspensions of embryonic cells (Moscona, 1961).

hile this orbital shaking was necessary to promote the aggre-
ation and formation of three-dimensional spheres from the
ell suspensions, it also improved the aeration and diffusion of
utrients to the cells. To promote the aeration and diffusion of
utrients while culturing whole brain hemispheres, orbital shak-
ng was explored here.

The present model also permits the study of soluble factors for

heir possible effects on cortical architecture. Extrinsic signal-
ng molecules such as neurotrophins, fibroblast growth factor

(FGF2), epidermal growth factor, pituitary adenylyl cyclase
ctivating peptide, and insulin-like growth factor 1 are known

mailto:jchun@scripps.edu
dx.doi.org/10.1016/j.jneumeth.2006.05.025
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Fig. 1. Dissection of cortical hemispheres. (A) E14 brains were removed from
the skull. (B) Cortical hemispheres were divided along the midline (white dashed
line). (C) Hemispheres were dissected away from the rest of the brain (black
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o alter cell cycle, migration, differentiation and cell death in
euronal cells (Barde, 1994; Bartlett et al., 1994; Bondy and
heng, 2004; Dicicco-Bloom et al., 1998; Farinas et al., 2002;
erguson and Slack, 2003; Ford-Perriss et al., 2001; Fukushima
t al., 2002; Ghosh and Greenberg, 1995; Kingsbury et al., 2003;
eirer et al., 2001; Ostenfeld and Svendsen, 2004; Temple and
ian, 1995; Vaccarino et al., 1999; Waschek, 2002; Wong and
uillaud, 2004); however, the roles these molecules play in shap-

ng cerebral cortical morphology are poorly understood.
Using orbital shaking in defined media, morphology and neu-

ogenic processes in whole cerebral hemispheres were assessed.
he novelties of this free-floating preparation are that it approx-

mates in vivo organization while preserving an intact cortical
emisphere and permits exposure of intact brain tissue to a wide
ange of soluble factors that can be delivered under controlled
onditions.

. Material and methods

.1. Animals

Animal protocols were approved by the Animal Subjects
ommittee at The Scripps Research Institute and conform to
ational Institutes of Health guidelines and public law. Timed-
regnant BALB/c or C57Bl/6 females were anesthetized by
alothane inhalation and sacrificed by cervical dislocation.

.2. Dissection of cortical hemispheres

Embryos were removed at embryonic day 14 (E14) and
laced into a 100 mm × 15 mm tissue culture (TC) dish
ontaining serum-free medium consisting of Opti-MEM I
Gibco-BLR, Cat. #31985-070) with 20 mM glucose, 55 mM
-mercaptoethanol and 1% penicillin/streptomycin. Brains of
mbryos were then dissected in individual 60 mm × 15 mm
ishes containing serum-free medium. Specifically, an anterior
orizontal cut above the eyes and a posterior horizontal cut
hrough the brainstem were performed using fine forceps (#5,
ine Science Tools). Starting at the lateral edge, skull tissue
as gently removed using forceps to free the entire brain from

he head of the embryo (Fig. 1A). The two cerebral cortical
emispheres were separated along the midline (white dashed
ine, Fig. 1B) and cut away from the remaining brain using a No.
1 scalpel blade (black dashed line, Fig. 1B). Excess midbrain
issue along the midline of each hemisphere was removed to
xpose the lateral ventricles for ample diffusion of medium
nd nutrients (black arrow, Fig. 1C). The meninges were kept
ntact. This procedure takes approximately 30 min per pregnant
emale (approximately 6–9 embryos) to be completed.

.3. Ex vivo cultures

Using a P1000 Pipetman and a cut pipette tip, each corti-

al hemisphere was transferred with 1 ml of medium from the
0 mm × 15 mm dish to an individual well of a 12-well TC plate
ontaining 1 ml of fresh medium (total volume within each indi-
idual well was 2 ml). TC plates were then placed on a shaker

o
w
fi
p

ashed line) and the lateral ventricles were exposed (black arrow) to allow ade-
uate diffusion of nutrients. The meninges were left intact. D: dorsal; R: rostral.
cale bar, 1 mm.

able inside a tissue culture incubator. Cortices were cultured
or 24–48 h at 37 ◦C in 5% CO2 with mild agitation (approxi-
ately 70 rpm), similar to previous descriptions (Rehen et al.,

996).
For growth factor experiments, hemispheres were cultured in

edium containing 1 �M lysophosphatidic acid (LPA; Oleoyl-
PA; Avanti Polar Lipids, Alabaster, AL) in 0.1% fatty-acid free
ovine serum albumin (FAFBSA; Sigma) to serve as a carrier
or LPA, or 40 ng/ml of FGF2 (R&D Systems, Minneapolis,

N) while the opposite hemisphere was cultured in control
edium containing 0.1% FAFBSA or serum-free medium alone

Fig. 2).

.4. Preparation of growth factors

For LPA, 220 �l sterile water was added to 1 mg LPA powder
o make a 10 mM solution. This 10 mM solution was then diluted
ith 10% FAFBSA to make a 100 �M solution. Either 20 �l

f 100 �M LPA in 10% FAFBSA or 20 �l of 10% FAFBSA
as added to each well containing a cortical hemisphere in 2 ml
nal volume of defined medium. The final concentration of LPA
er well is 1 �M in 0.1% FAFBSA. For FGF, FGF powder is
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Fig. 2. Method used for assessing the effects of extrinsic factors on cortical
anatomy. Cortical hemispheres from the same animal were separated along the
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idline and one hemisphere was cultured in medium containing a growth factor
hile the other hemisphere was cultured in control medium.

ehydrated to 20 ng/�l in 0.1% BSA. We then add 4 �l of this
olution to a cortical hemisphere in 2 ml total medium.

.5. Tissue processing

At the end of culture, hemispheres were fixed overnight at
◦C by adding 2 ml of 8% paraformaldehyde (para) in 0.1 M
hosphate buffered saline (PBS; pH 7.4) to the 2 ml of medium
ithin each TC well. After fixation, cortices were cryoprotected
y replacing the fixative with a 15% sucrose solution in PBS for
0 min, followed by a 30% sucrose solution overnight at 4 ◦C.
ortices were then embedded in 22 mm × 22 mm × 20 mm
isposable embedding molds (Polyscience, Inc., Warrington,
A) using Tissue-Tek embedding matrix (Sakura, Torrance,
A). Cortices were oriented at the bottom of the mold in the

agittal plane such that the lateral ventricles were visible from
he dorsal surface (see orientation in Fig. 1C). Brain molds
ere rapidly frozen on dry ice and transferred to −20 ◦C until

ectioning. For in situ end-labeling plus (ISEL+), cultured
ortices were immediately fresh frozen, rather than para fixed,
nd transferred to −20 ◦C until sectioning. Both fixed and
nfixed tissue was cut at 10 �m on a cryostat, mounted onto
uperfrost Plus slides (Fisher Scientific) and air-dried.

Freshly isolated cerebral cortices or in some cases, whole
mbryos, were immediately frozen in Tissue-Tek and sectioned
s described above for use as in vivo controls.

.6. Immunolabeling and ISEL+ labeling

Monoclonal antibodies and rabbit polyclonal antisera used
or staining progenitor cells and postmitotic neurons included

-Ki67 (1:100, Pharmingen), �-neuronal class III � tubulin

1:500, Chemicon), �-phospho-histone H3 (�-phospho-H3,
:500, Upstate Biotechnology) and �-cleaved caspase-3 (1:50,
ell Signaling). Primary antibodies were detected with cy3-
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r FITC-conjugated goat �-mouse (1:200) or cy3-conjugated
onkey �-rabbit (1:500) antibodies (Jackson Immunoresearch).
issue was first blocked with 2.5% bovine serum albumin
nd 0.3% Triton X-100 in PBS for 1 h. Tissue was then
insed in PBS three times for 5 min each and incubated in
he primary antibody/antiserum overnight. Sections were
insed in PBS three times for 10 min each and incubated in
econdary antibody for 1 h. Tissue was rinsed again in PBS
hree times for 5 min each with the first wash containing the
uclear counterstain, 4′,6′-diamino-2-phenylindole (DAPI;
igma). Sections were coverslipped with Vectashield (Vector
aboratories).

ISEL+ labeling was performed as previously described
Blaschke et al., 1996; Blaschke et al., 1998) using digoxigenin-
1-dUTP and alkaline phosphatase-conjugated anti-digoxigenin
ab fragments. Alkaline phosphatase activity was detected using
-nitroblue tetrazolium chloride and X-phosphate to yield a
lack reaction product. After the reaction, sections were stained
ith DAPI, washed in Milli-Q H2O and coverslipped with Crys-

al/Mount.

.7. Quantification of labeled cells

Sagittal sections through the center of the lateral ventricle
ere used for analysis. For quantification of immunolabeled

ells, two cross-sections (∼200 �m across by width of cortex
rom pial to ventricular surface) from anterior, middle and/or
osterior cortex that were matched for location in ex vivo and
n vivo hemispheres or in control and treated hemispheres were
nalyzed in six animals for each treatment group (N = 12 total
ections per group). For ISEL+ labeled cells, three cross-sections
atched for location in ex vivo and in vivo hemispheres were

nalyzed in three animals from each treatment group (N = 9 total
ections per group). All sections were captured with a Zeiss
xioCam digital camera attached to a Zeiss Axioscope using

ither a X20 dry objective lens or a X25 oil objective lens.
abeled cells were scored in Adobe Photoshop 6.0 (Adobe Sys-

ems) and quantified in NIH image 1.62 (NIH). Experimenters
ere blind to the experimental conditions during counting.
or mitotic analyses of phospho-H3-labeled cells, counts were
xpressed as a percentage of total cell number per cross-section,
etermined by counting counterstained DAPI nuclei. Compar-
sons between experimental groups were made using paired and
npaired t-tests in Statview 5.0 (SAS Institute Inc.). Images were
repared in Photoshop 6.0.

. Results

.1. Brain morphology is preserved in ex vivo culture

With orbital shaking, cortical hemispheres displayed a
ealthy anatomical appearance after 24 h in culture (Fig. 3B),
aintaining the morphology observed in vivo (i.e. a freshly
solated cortex; Fig. 3A). In contrast, cortices kept under
imilar but static conditions were characterized by massive cell
eath (Fig. 4B) as compared to cortices subjected to shaking
Fig. 4A).
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ig. 3. Cortices cultured ex vivo maintain a healthy morphology. Whole mount
ote that there is no significant change in gross cortical morphology following

.2. Cortical compartments and mitosis are preserved in ex
ivo culture

The cortical region immediately adjacent to the lateral ven-
ricle, termed the ventricular zone (VZ) contains proliferating
eural progenitors cells (NPCs) in various stages of the cell
ycle. Immunolabeling for Ki67, a marker for proliferating cells,
evealed VZ limits that were similar between in vivo and ex vivo
reparations (Fig. 5A and B). These NPCs undergo interkinetic
uclear migration whereby the nucleus migrates between the
op and bottom of the ventricular zone (VZ), dependent upon its
ell cycle phase (Sauer, 1935). Analysis of migrating cells using
romodeoxyuridine (BrdU) pulses showed that this interkinetic
igration was preserved in ex vivo cultures (Kingsbury et al.,
003). Examination of mitotic cells using an antibody against
he phosphorylated form of histone H3 (Hendzel et al., 1997)
howed that mitotic cells in the ex vivo culture were dividing at
he bottom of the VZ (Fig. 5D), similar to cells in vivo (Fig. 5C).

V
i
w
i

ig. 4. Orbital shaking of ex vivo cultures prevents cell death. Matched E14 cortices w
or cleaved caspase-3 (red). Individual nuclei are stained blue with DAPI. Note that th
he shaken cortex shows very few. CP: cortical plate; IZ: intermediate zone; SVZ: sub
of a freshly isolated E15 cortex (A) and an E14 cortex after 24 h of culture (B).
o culture. D: dorsal; R: rostral. Scale bar, 0.5 mm.

urthermore, there were no significant differences in the per-
entage of mitotic cells (P = 0.74, unpaired t-test) or cerebral
all thickness (P = 0.08, unpaired t-test) between E15 freshly

solated cortices (i.e. in vivo cortices) and E14 cortices cultured
or 24 h ex vivo.

.3. Migration and differentiation are preserved in ex vivo
ulture

The correct migration and position of cortical cells within
he cortex is essential for proper brain function. When neu-
al progenitor cells exit the cell cycle, they can be identified
y the marker Tuj-1, otherwise known as neuronal class III �-
ubulin (Menezes and Luskin, 1994). Upon migrating out of the

Z, class III �-tubulin positive neurons settle in the develop-

ng cortical plate (CP). To examine whether neuronal migration
as preserved in the ex vivo culture, class III �-tubulin labeling

n the CP was examined. Within this cortical region, the num-

ere shaken at 70 rpm (A) or not shaken (B) for 24 h ex vivo and immunostained
e cortex from the static culture shows numerous caspase-3 positive cells, while
ventricular zone; VZ: ventricular zone. Scale bar, 25 �m.
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Fig. 5. In vivo cortical compartments, mitosis and differentiation are preserved in cultured cortices. Cortices were either freshly excised at E15 (A, C and E) or
isolated at E14 and cultured for 24 h (B, D and F). VZ limits are similar in both preparations, as identified by immunolabeling for Ki-67, a marker of proliferating
cells (A and B). The location of mitotic cells, identified by immunolabeling for phospho-histone H3, is comparable between in vivo (C) and ex vivo conditions (D).
The number and position of early postmitotic neurons in the cortical plate of both in vivo (E) and ex vivo (F) preparations identified by neuronal class III �-tubulin
labeling, indicate that differentiation and migration are preserved in the ex vivo system. Scale bar, 50 �m.

Fig. 6. A comparison of cell death in E15 freshly isolated cortices and E14 cortices cultured for 24 and 48 h. No significant difference was observed in the percentage
of ISEL+-labeled cells at E15 in vivo (A) vs. E14 cortices cultured for 24 h (B). In contrast, the number of dying cells labeled by ISEL+ was markedly increased in
E14 cortices cultured for 48 h (C). Scale bar, 50 �m.



S.K. Rehen et al. / Journal of Neuroscience Methods 158 (2006) 100–108 105

Fig. 7. The ex vivo model can be used to screen growth factors for specific effects on cortical morphology and neurogenic processes. Compared to control cortices,
exogenous exposure to FGF2 has no effect on cortical morphology (A and B) whereas LPA causes pronounced cortical folds that resemble gyri (arrows) and sulci
(C and D). Scale bar, 0.25 mm. Correspondingly, FGF2 produces no change in the appearance of mitotic figures (red) or differentiated neurons (green) relative to
untreated controls (E and F). In contrast, LPA causes an increase in the number of mitotic figures, displacement of mitotic figures from the bottom of the VZ and an
increase in terminally differentiated neurons (G and H). Scale bar, 50 �m.
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er of class III �-tubulin labeled cells was similar for both ex
ivo and in vivo conditions (Fig. 5E and F; P = 0.56, unpaired
-test).

.4. Cell death in ex vivo cortices is similar to that in vivo

The developing cerebral wall is characterized by a substan-
ial amount of proliferative cell death (Blaschke et al., 1996,
998), that when altered, can have profound effects on brain
ormation (Kuida et al., 1998, 1996; Kuster et al., 1993; Li et
l., 2003; Pompeiano et al., 2000). To examine whether in vivo
ell death was preserved in ex vivo cortices, in situ end-labeling
lus (ISEL+) labeling was used to label dying cells throughout
he cerebral wall (Blaschke et al., 1996). The number of ISEL+-
ositive cells was similar between E15 freshly isolated cortices
nd E14 cortices cultured for 24 h (Fig. 6A and B; E15 freshly
solated cortices, 64% ± 7.0; E14 cultured cortices, 66% ± 7.5;
= 0.89, unpaired t-test), indicating that 24 h of explant culture

oes not alter normal in vivo cell death. Note that the 64% cell
eath observed in vivo at E15 is in agreement with previously
ublished accounts of cell death at E14 (∼55%) and E16 (∼75%)
see Fig. 4B and 9 from Blaschke et al., 1996). Extending culture
ime beyond 24 h using the current parameters (i.e. Opti-MEM
medium plus supplements, 5% CO2 level, etc.) resulted in a

ubstantial increase in cell death at 36 h (data not shown) and
8 h (Fig. 6C). At the later time point, the entire cerebral wall
isplayed massive cell death and reduced thickness (compare
ig. 6C with B), demonstrating that the explants were compro-
ised after 2 days in culture.

.5. Extrinsic factors induce cortical folding in ex vivo
ulture

To test the feasibility of using free-floating ex vivo brains to
dentify potential factors affecting brain anatomy, the two cere-
ral hemispheres from each animal were physically separated
o that one could be cultured with an extrinsic factor while the
ther was cultured in control medium (Fig. 2). E14 cortices were
sed since this age is the midpoint of mouse cortical neurogen-
sis (Caviness, 1982). One hundred percent of the hemispheres
xposed to LPA (N = 13) but not FGF2 displayed significant
nd obvious cortical folding compared to opposite hemispheres
btained from the same animals that were cultured in control
edium (Fig. 7A–D; Kingsbury et al., 2003). In addition, after

4 h, neurogenic processes such as mitosis and differentiation
ere altered following LPA but not FGF2 treatment (Fig. 7E–H;
ingsbury et al., 2003).

. Discussion

Since the beginning of the last century, scientists have been
ooking for new ways to culture cells and tissues (Strangeways
nd Fell, 1926). As with all in vitro systems, both advantages

nd potential limitations exist. In the ex vivo cortical culture
ethod described here, the processes of mitosis, differentia-

ion and migration of young postmitotic neurons were similar
o those described in vivo within the defined period of cultur-

C

i

nce Methods 158 (2006) 100–108

ng. Furthermore, this paradigm revealed dramatic anatomical
nd histological alterations of the embryonic cerebral cortex
fter specific growth factor treatments, thus serving as a gain-
f-function model. A possible limitation of the system is poor
iability after extended culture time (>24 h). Whereas cell death
as similar between E15 in vivo tissue and E14 cortices cul-

ured for 24 h, substantial cell death was seen after 36 and 48 h
f culture; however, this may be improved with different growth
edia. Still, for many applications, the advantages of this ex vivo

ystem outweigh the potential limitations.
Our free-floating cerebral cortex approach provides a con-

rolled and precise way of varying ligand type, concentration,
xposure time and other variables for samples derived from any
enotype, under identical conditions, using tissue from the same
nimal (i.e. comparing one hemisphere to the other) (Kingsbury
t al., 2003, 2004). In conjunction with animal studies (e.g.
nockout mice), this system can provide important basic infor-
ation about normal brain formation and also reveal new roles

or biological molecules, which may regulate brain morphology
nd processes such as cortical folding.

A critical aspect of this approach relies on orbital shaking
hile culturing whole cerebral cortex hemispheres. Moscona

nd colleagues started using orbital shaking to culture aggre-
ates of cells more than 40 years ago (Moscona, 1961), and
ore recently we, among others, have used this technique to

ulture retinal explants (Linden et al., 1999; Rehen et al., 1999,
996). We believe that orbital shaking provides better aeration
nd diffusion of nutrients in vitro, which vastly improves the
iability of intact cerebral cortices in culture.

We recently used this ex vivo cortical culture method to study
he effects of lipid molecules on cortical architecture by exam-
ning the effects of exogenously applied LPA. Within 17 h, LPA
nduced cortical folding and reduced cell death while increasing
ell cycle exit of NPCs in the embryonic cortex (Kingsbury et
l., 2003). Moreover, this process was shown to involve two
PA receptors, LPA1 and LPA2, based on the use of cortices

rom LPA1LPA2 receptor double null mice. By contrast, cortical
olding was not observed using the well-studied growth factor
GF2. These results are particularly intriguing given that corti-
al folding malformations are associated with mental retardation
nd epilepsy (Crino, 2004; Ertl-Wagner et al., 2003; Guerrini et
l., 2003). Examples of other diseases associated with alteration
n cortical folds include lissencephaly, in which the normally
onvoluted cerebral cortex is smooth (Olson and Walsh, 2002;
ilz et al., 2002; Reiner, 1999), autism, and schizophrenia, in
hich an increase in the amount of cortical convolutions is
bserved (Hardan et al., 2004; Harris et al., 2004; Narr et al.,
004). It is very likely that other portions of the embryonic CNS
an also be similarly cultured. This ex vivo culture method thus
ffers a new approach to studying and manipulating the cellular
nd molecular mechanisms influencing brain physiology and
athology.
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