Recognition of DNA by Synthetic Antibodies

Shana M. Barbas, Peter Ghazal, Carlos F. Barbas, III, and Dennis R. Burton*

Departments of Immunology and Molecular Biology
The Scripps Research Institute
10666 North Torrey Pines Road
La Jolla, California 92037

Received November 10, 1993

A general method for the generation of molecules capable of recognizing double-stranded DNA (dsDNA) with high affinity and specificity would have wide implications in chemistry, biology, and medicine. For instance, such reagents could be useful in genome mapping by blocking certain sites to enzyme action, in diagnostic procedures requiring identification of certain DNA sequences or in therapeutic regimes requiring control of gene expression. Forming the most comprehensive recognition/diversity system known, antibodies would appear promising for use in the laboratory. In these libraries, antibody molecules are expressed on the surface of phage allowing the selection and amplification of specific antibodies by affinity sorting of the libraries on immobilized antigen. We show here how this method can be readily used to generate antibodies with high affinity for dsDNA.

One of the antibodies shows some sequence specificity which offers the potential to be enhanced by mutagenesis.

Three combinatorial Fab libraries were prepared on the surface of phage using the pComb 3 system. Each library screened in enzyme-linked immunoassay (ELISA) for reactivity with dsDNA. Two Fabs giving a strong positive signal were isolated.

Figure 1. Amino acid sequences of the variable domain CDR3 regions of the heavy chains (HC) and light chains (LC) constituting the semisynthetic libraries and the DNA-binding antibodies SD1 and SD2. x refers to a position which was randomized as described. The complete sequences of the heavy and light chain variable domains from which the libraries were constructed are available from GenBank (accession numbers L22156 and L22157).

Figure 2. ELISA profiles of the reactivity of Fab SD1 (a, top) and SD2 (b, bottom) with DNA and selected double-stranded oligonucleotides. The plots show the binding of Fabs monitored colorimetrically as a function of Fab concentration. ELISA wells were first coated with antigen. For human placental DNA, 10 μg of DNA/well was used. For the oligonucleotides, 0.5 μg/well was used. Plates were then washed five times with water, blocked in 100 μL of 3% BSA/PBS for 1 h at 37 °C, and then reacted with 25 μL of Fab in PBS for 1 h at 37 °C. After washing 10 times with water, 25 μL of a 1 in 1000 dilution of alkaline phosphatase-conjugated goat anti-human IgG F(ab')2 (Pierce) was added and incubated for 1 h at 37 °C. Following 10 washes with water, 50 μL of p-nitrophenyl substrate was added and color development monitored at 405 nm.

The affinities and specificities of the Fabs were examined by ELISA. Both Fabs bind to double- and single-stranded DNA but not to the negatively charged polyethylene dextran sulfate...
nor to lipid A. Competitive ELISA, in which soluble double-stranded plasmid DNA competed with immobilized DNA for binding to Fab, showed half-maximal binding of Fab at approximately 10^{-9} M plasmid DNA, indicating a high-affinity interaction.\(^5\) Figure 2a shows that Fab SD1 binds poly(dG)-poly(dC) as effectively as DNA, poly(dG-dC)-poly(dG-dC) less effectively, and poly(dA)-poly(dT) and poly(dA-dT)-poly(dA-dT) poorly. Fab SD2 binds all of the oligonucleotide duplexes considerably less effectively than DNA (Figure 2b).

Fab SD1 was further investigated by electrophoretic mobility shift assays. Figure 3a shows that the antibody retards a double-stranded oligonucleotide probe containing both GC- and AT-rich regions. Evidence that Fab SD1 is directly responsible for the formation of the retarded complex is provided by the lack of a shift with an Fab against HIV-1 surface glycoprotein gp120 (HIV Fab). Binding and EMSA conditions were as described.\(^5\) The thick arrow indicates the position of the specific Fab SD1 nucleoprotein complex, and the α arrow indicates the position of the supershifted Fab SD1 nucleoprotein complex. 0 marks the origin of migration and FP the position of the free probe. (b, right two panels) Specificity of binding of Fab SD1 to DNA. Lanes 1–22 contain $0.08 \text{ pmol of } ^{32}\text{P-labeled probe}$ and 0.2 pmol of Fab SD1 in lanes 2–11 and 13–22, respectively. In addition, increasing concentrations of competitor oligonucleotide are included as shown. Numbers refer to molar excess of competitor oligonucleotide relative to the probe. Arrows indicate the position of the Fab nucleoprotein complex.

Figure 3. (a, left panel) Interaction between Fab SD1 and DNA in an electrophoretic mobility shift assay (EMSA). Lanes 1–6 contain 0.08 pmol of 32P-labeled double-stranded probe ($5'\text{-AAT-GTA-TGC-GCG-CGC-GCT-TTA-GGG-GCC-CC-3'}$) with 0.2 pmol of Fab SD1 (lanes 2, 3, and 4). Lanes 3 and 6 included a preincubation with an anti-Fab reagent (α-Fab IgG). Lanes 4 and 5 included 0.2 pmol of a control Fab reacting with HIV-1 surface glycoprotein gp120 (HIV Fab). Binding and EMSA conditions were as described.\(^5\) The thick arrow indicates the position of the specific Fab SD1 nucleoprotein complex, and the α arrow indicates the position of the supershifted Fab SD1 nucleoprotein complex. 0 marks the origin of migration and FP the position of the free probe. (b, right two panels) Specificity of binding of Fab SD1 to DNA. Lanes 1–22 contain $0.08 \text{ pmol of } ^{32}\text{P-labeled probe}$ and 0.2 pmol of Fab SD1 in lanes 2–11 and 13–22, respectively. In addition, increasing concentrations of competitor oligonucleotide are included as shown. Numbers refer to molar excess of competitor oligonucleotide relative to the probe. Arrows indicate the position of the Fab nucleoprotein complex.

\(\text{(6) The plasmid used was a 5-kb derivative of pComb3.1 Therefore a stoichiometry of 10–100 Fabs would indicate apparent affinities on the order of } 10^2–10^4 \text{ M}^{-1}. \text{ This is consistent with the data in Figure 2a,b showing half-maximal binding of Fabs in the range } 10^2–10^4 \text{ M. Recombinant Fabs have previously been found to be monomeric under typical conditions as judged by gel filtration analysis.}\)