Reviews
C. G. Wermuth, in The Practice of Medicinal Chemistry,

Definition of Isosterism

Langmuir (1919): Compounds or groups of atoms having the same number of atoms and electrons
Examples: N₂ and CO, N₂O and CO₂, N₃⁻ and NCO⁻

Grimm (1925): “Hydride Displacement Law” addition of hydride to an atom gives to the resulting pseudoatom the properties of the atom with the next highest atomic number.

<table>
<thead>
<tr>
<th>Hydride Displacement Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>CH₂</td>
</tr>
<tr>
<td>CH₃</td>
</tr>
<tr>
<td>CH₄</td>
</tr>
</tbody>
</table>

Erlenmeyer (1932): atoms, ions or molecules in which the peripheral layers of electrons can be considered identical.

Parameters affected with bioisosteric replacements
Size, conformation, inductive and mesomeric effects, polarizability, H-bond formation capacity, pKₐ, solubility, hydrophobicity, reactivity, stability.

Definition of Bioisosterism

Friedman (1951): Bioisosteres are atoms or molecules that fit the broadest definition for isosteres and have the same type of biological activity.

Thornber (1979): Groups or molecules which have chemical and physical similarities producing broadly similar biological effects.

Bioisosteric replacements: Why?
• Greater selectivity
• Less side effects
• Decreased toxicity
• Improved pharmacokinetics (solubility-hydrophobicity)
• Increased stability
• Simplified synthesis
• Patented lead compounds

Examples: atoms in the same column of the periodic table, Cl and CN and SCN (despite having different number of atoms)
H to F replacement

Fluorine: similar size with hydrogen
most electronegative halogen
C-F bond very stable

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>F</th>
<th>Cl</th>
<th>CH₃</th>
<th>CF₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Waals radius</td>
<td>1.2</td>
<td>1.35</td>
<td>1.80</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Molecular Refractivity</td>
<td>1.03</td>
<td>0.92</td>
<td>6.03</td>
<td>5.65</td>
<td>5.02</td>
</tr>
<tr>
<td>Inductive effect</td>
<td>-</td>
<td>3.08</td>
<td>2.68</td>
<td>0.00</td>
<td>2.85</td>
</tr>
<tr>
<td>Resonance effect</td>
<td>0.00</td>
<td>-0.34</td>
<td>-0.15</td>
<td>-0.13</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Ideal replacement to study the effect of electronegativity change without affecting steric requirements

F (or other halogens) can be placed on easily oxidized positions to increase stability during metabolic processes

Thus, F (or other halogens when size is not critical) are frequently placed on easily oxidized aromatics
Methyl groups often substituted by CF₃
-OH to -NH₂ or -SH replacement
(also C=O to C=NH or C=S)

O and NH have similar sizes (but not SH)
All three bear H-bonding donor and acceptor capacities

Replacement of OH with NH₂ can stabilize a different tautomer,
especially in the case of heterocyclic systems

Halogen replacements
CN and CF₃ may be used as alternative electron-withdrawing groups instead of halogens.
The two groups have comparable effects on electronics, but CN will increase the overall hydrophilicity.

Ring replacements
Sulfonamide antibacterials: phenyl group may be replaced by many heterocyclic aromatics to give active compounds
COOH replacements

- Hydroxamic acid (strong chelating agents)
- Acylcyanamide (similar acidities)
- Sulfonimide
- Phosphonate (more acidic; ionized at physiological pH)
- Sulfonate
- Sulfonamide (less acidic)
- Tetrazole
- Hydroxyisoxazole
- Oxadiazolone

Carboxyl group may be replaced in order to alter acidity, or modify lipophilicity without affecting pKa.

Tetrazoles have comparable pK's with carboxylic acids, but greater lipophilicity.

Peptide surrogates

Peptides are characterized by diminished bioavailability when administered orally. Replacement of the sensitive amide bond by various groups can increase their stability.

- Ester
- N-alkylation
- Amide to double bond
- Thioamide
- Dehydroaminoacid
- Azapeptide

Losartan (antihypertensive)
Preparation of tetrazoles

\[\text{R} = \text{N} \xrightarrow{\text{HN}_3, \text{base}, \Delta} \text{R} = \text{N} \]

\[\text{Ph} = \text{N} \xrightarrow{\text{HCl}} \text{Ph} = \text{N} \]

\[\text{Ph} = \text{N} \xrightarrow{\text{NaOH; HCl}} \text{Ph} = \text{N} \]

\[\text{Ph} = \text{N} \xrightarrow{\text{EtO}} \text{Ph} = \text{N} \]

\[\text{Ph} = \text{N} \xrightarrow{\text{MeCN, reflux}} \text{Ph} = \text{N} \]

\[\text{Ph} = \text{N} \xrightarrow{\text{H}_2\text{O}} \text{Ph} = \text{N} \]

Tomudex analogues

Peptide (amide) replacements

Amide to hydroxyethyl

Amide to alpha-difluoroketone

Peptide (amide) replacements

Amide to alkene

1. CICO/Ent, NaBH₄
2. Bu₃P, (PhS)₂
3. MCPBA

1. LDA, ICH₂COO-i-Bu
2. LAH
3. DHP
4. O₃, DMS

1. MeLi, MeOAl(i-Bu)
2. Na(Hg), NaH
3. P₄O₆

1. ClCOOEt, NaBH₄
2. Bu₃P, (PhS)₂
3. MCPBA

1. Jones'
2. NaOH, DCC, t-BuOH
3. (Boc)_2O

1. OsO₄, NMO
2. NaIO₄
3. Jones'
4. NaOH

Separate by Flash Chromatography
