Background and history: What's in a name?

Annulation has no official (IUPAC) definition until 1994!

Michael Jung clears the haze around the term:
"Annulation, derived from the Latin word *annulus* (ringed) means "the formation of rings". In organic chemistry this term is used to describe the process of building a ring onto a pre-existing system, cyclic or non-cyclic... This broad definition includes in a general sense many reactions that are not thought of as annulation reactions, such as Diels-Alder reactions, acid catalyzed polyolefinic cyclizations, photochemical, radical and thermal cyclizations."

Rick Danheiser’s simplified definition:
"We define as annulations those ring-forming processes in which two molecular fragments are united with the formation of two new bonds."

Dennis Curran backs Danheiser
"Although it is used very commonly by organic chemists, the word "annulation" has yet to find a standard spelling or meaning. An authoritative review recommends the spelling "annulation", not "annelation". The latter spelling is not listed in any of the dictionaries that we consulted. We subscribe to the definition of Danheiser that an annulation is a "ring-forming process in which two molecular fragments are united with the formation of two new bonds". A ring need not be appended to a pre-existing ring to qualify as an annulation."

Gary Molander adds clarity and wisdom
"The condensation of two acyclic units through creation of two bonds in a single process is by far the most efficient means of creating cyclic molecules. Mechanistically such conversions may take place in either a concerted manner (like the Diels-Alder cycloaddition reactions) or in a sequential mode that is characteristic of many [3 + 2] annulations for five-membered ring synthesis. From a synthetic point of view, either process is sufficient so long as regiochemistry and stereochemistry can be controlled."

Definitions (IUPAC Recommendations 1994)

Annulation
A transformation involving fusion of a new ring to a molecule via two new bonds. Some authors use the term "annelation" for the fusion of an additional ring to an already existing one, and "annulation" for the formation of a ring from one or several acyclic precursors, but this distinction is not made generally.

Annlation
Alternative, but less desirable term for annulatton. The term is widely used in German and French language publications.

Cycloaddition
A reaction in which two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity.

Cyclization
Formation of a ring compound from a chain by formation of a new bond.

Glossary of terms used in physical organic chemistry:

What to expect
The focus of this seminar will be methods for ring construction that can be used as a package (one-pot protocol) rather than a series of reactions ultimately leading to a cyclization.

Annulation types and varieties

Two Carbon Annulation

![Reaction diagram](J. Org. Chem. 1980, 45, 1046.)

Three Carbon Annulation

Review: *Synthesis* 1984, 520.

![Reaction diagram](J. Org. Chem. 1981, 46, 3758.)

Four Carbon Annulation (Robinson type)

![Reaction diagram](J. Org. Chem. 1984, 49, 4567.)

Four Carbon Annulation (non-Robinson type)

Five carbon annulation

![Reaction diagram](Tetrahedron. Lett. 1990, 31, 5985.)

Spiroannulation

Benzannulation

Some well known annulations not covered

Dötz
Pictet-Spangler
Larock indole synthesis

These well known, powerful transformations are deserving of their own group seminar to showcase the synthetic utility and potential of each.
Robinson Annulation

General note

The Robinson annulation is useful only in simple cases, or where the availability of starting materials compensates for the low yield of desired product. The reactions is typically low yielding due to polymerization of Michael acceptor by strongly basic enolates.

α-silyl enone stabilization and shielding

![Chemical structure](image1)

Stork-Jung modification

![Chemical structure](image2)

Functionalized Products

![Chemical structures](image3)

Antibody-catalyzed enantioselective Robinson annulation

![Chemical structure](image4)

A proline-catalyzed asymmetric Robinson annulation reaction

![Chemical structure](image5)

Total synthesis of hispidospermidin

![Chemical structures](image6)

Some important masked Michael acceptors
Ring Construction via Annulation

Danheiser benzannulation

\[
\begin{align*}
\text{Reaction with aldehydes} & \quad (97\%) \\
\text{TMSO} & \quad \text{TIPS} \\
\text{Use of siloxyacetylenes} & \\
\text{Hauser Annulation} & \\
& \quad \text{LDA} \\
\text{Synthesis of aquayamycin} & \\
\text{Weiss-Cook annulation} & \\
\text{Paquette, J. Org. Chem. 1995, 60, 353.} \\
\end{align*}
\]

Danheiser cyclopentene annulation

Prins–pinacol
Total Synthesis of (+)-kumausallene

aza-Cope-Mannich
Total synthesis of (+)-strychnine

Total Synthesis of (±)-kumausallene
Prins reaction
1) B(OH)₂, DMAP
2) LiCuBr₂
(73%)

Total Synthesis of (–)-magellanine and (+)-magellinine

Total synthesis of (±)-actinophyllic acid
Aza-Annulation in Total Synthesis

Synthesis of (±)-Strychnofoline

Fragment A synthesis
1. **1)** BnNH₂
2. **2)** OMe
3. **3)** Pd/C, H₂

- **6 steps**
- **3 steps**

\(\text{PG = TBDPS) } \)

Fragment B synthesis
1. **1)** Cl
2. **2)** polyphosphoric acid

- **6 steps**
- **5 steps**

Convergent annulation

\(\text{(±)-strychnofoline) } \)

Diastereoselectivity

<table>
<thead>
<tr>
<th>Type Normal A</th>
<th>Type Normal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{eq} > 1)</td>
<td>(K_{eq} < 1)</td>
</tr>
</tbody>
</table>

Protonated type normal B benefits from a stabilizing H-bond

The position of the equilibrium is correlated to the protonation state of the alkaloid. In acidic medium the type normal B stereoisomer dominates. Under alkaline conditions the type normal A stereoisomer dominates.

Non-protonated form suffers from electrostatic repulsion between the nitrogen and carbonyl lone pairs.

Total synthesis of aspidophytine

1. \(t\)-BuLi, CuBr•DMS then
2. MeLi, Boc₂O

- **(71%, 2 steps)**

Marino annlation

Total synthesis of (–)-cylindricine

1. \(K_2\text{PO}_4 \)
2. TPAP, NMO

- **(85%, 2 steps)**

HO
Ring Construction via Annulation

Ruben Martinez

1) Pd(OAc)$_2$ (cat.)
 rac-BINAP, Cs$_2$CO$_3$
2) Pd(OAc)$_2$ (cat.)
 Cu(OAc)$_2$, AcOH
3) Pd/C, H$_2$
 (76%, 3 steps)

Citation:
Ruben Martinez
Baran Group Meeting
01/16/16

Hagiwara annulation reagent: vinylcyclopropanation and beyond

Citation:
Hagiwara annulation reagent: vinylcyclopropanation and beyond

Citation:
Total synthesis of (±)-clusianone

Citation:
Synthesis of retigeranic acid
Radical-Mediated Annulations

Radical annulation defined:
“A radical annulation involves an intermolecular addition onto a radical acceptor, followed by intramolecular trapping of the radical intermediate onto another radical acceptor functionality present on the initial radical-bearing molecule.”

Synthesis 2003, 6, 803.

Radical annulation basics

Once formed, radical intermediate C can:
1) React with initial rad. precursor
2) React with H atom source
3) β-fractionation (requires design)
4) Add to another equiv. of rad. acceptor

Curran's logic for radical reaction design:
When designing a radical annulation sequence, it is advantageous to permit long lifetimes for the intermediate radicals so that desired reactions can occur. The chain transfer step should be as rapid as possible to prevent diversion of the final radical along undesired pathways.

J. Am. Chem. Soc. 1987, 109, 6658.

Atom transfer radical annulation

The term "atom transfer" emphasizes the method of control of the radical reaction. In the tin hydride method, the chain is transferred by H atom abstraction from the reagent. In the atom transfer method the chain is transferred by halogen atom abstraction from the starting halide.

Curran's "atom transfer cycloaddition"

Application of method to synthesis of albene

1) Bu₃SnSnBu₃, D
2) NaOH
3) CH₂N₂
4) Bu₃SnH
(55%, 4 steps)

Bicyclic systems

Total synthesis of matrine

Ring Construction via Annulation

Radical annulation cont.
Radical annulation strategy to bicyclo[3.3.1]nonanes

\[\text{Me} \quad \text{Me} \quad \text{Br} \quad \text{CN} \quad \text{Bu}_3\text{SnH}, \text{AIBN} \quad \text{C}_6\text{H}_6 \quad (62\%); 6:1 \alpha: \beta \]

Ring Opening Induced by Iminyl Radicals

\[\text{Me} \quad \text{N} \quad \text{N} \quad \text{NSPh} \quad \text{CO}_2\text{Me} \quad \text{Bu}_3\text{SnH} \quad (76\%) \]

Radical ring expansion approach to fused carbocycles

\[\text{O} \quad \text{Me} \quad \text{Br} \quad \text{Bu}_3\text{SnH}, \text{AIBN} \quad \text{O}_3 \quad \text{Ph} \quad \text{O} \quad \text{Me} \]

Total synthesis of epimeloscine and meloscine enabled by a cascade radical annulation

\[\text{Bu}_3\text{SnH} \quad \text{KOT-Bu} \quad \text{SnF}_2 \quad \text{THF}, \text{rt} \quad (95\%); >10:1 \text{dr} \]

Development of a trimethylenemethane dianion equivalent

\[\text{SnF}_2 \quad \text{THF}, \text{rt} \quad (43\%) \]

The resulting products are pseudo-symmetrical. Desymmetrization about the exomethylene en route to a target molecule is significantly challenging. To address this issue Molander developed a bis(TMS) endol ether to act as a \(\beta \)-dicarbonyl dianion equivalent.

Ring Construction via Annulation

Molander cont.

\[
\text{TMSO} \cdot \text{OMe} + \text{CHO} \text{CHO} \\
\begin{array}{c}
\text{DCM, } -78^\circ \text{C} \\
(66\%–77\%)
\end{array}
\]

Neighboring group participation

\[
\text{TMSO} \cdot \text{OMe} + \text{n-Pr} \cdot \text{CHO} \\
\begin{array}{c}
\text{DCM, } -78^\circ \text{C} \\
(80\%–90\%)
\end{array}
\]

NHC-catalyzed annulation of enals and aldehydes

\[
\text{ArCHO} + \text{H} \cdot \text{R}^1 \\
\begin{array}{c}
\text{DBU (cat.)} \\
10:1 \text{THF}:\text{t-BuOH} \\
25^\circ \text{C}
\end{array}
\]