
How much more can we explain with genetics? EHR mining and the undiagnosed patient

Lisa Bastarache

Future of Individualized Medicine, 2019

What is wrong with this patient?

BROWN-VIALETTO-VAN LAERE SYNDROME

HEAD & NECK Ears - Hearing loss, sensorineural - Absent brainstem auditory-evoked responses Eyes - Visual loss SLC52A2 or SLC52A3 RESPIRATORY

MUSCLE, SOFT TISSUES

- Respiratory insufficiency

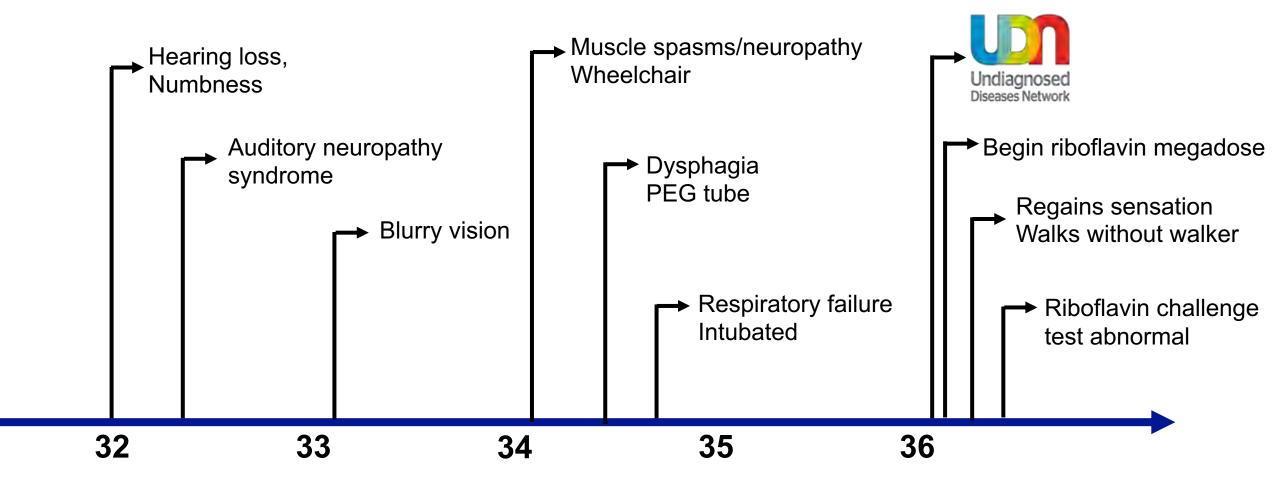
- Muscle weakness, proximal, distal, and axial, severe
- Neurogenic changes seen on EMG
- Fibrillations

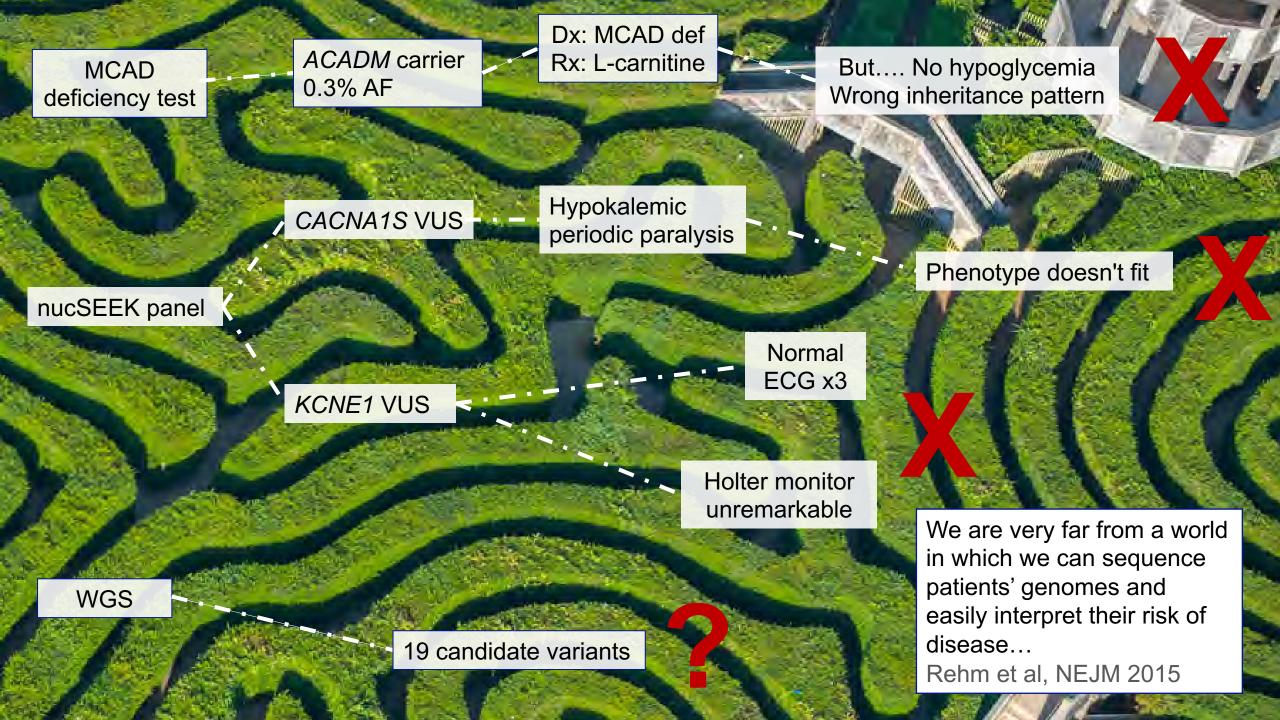
NEUROLOGIC

Central Nervous System

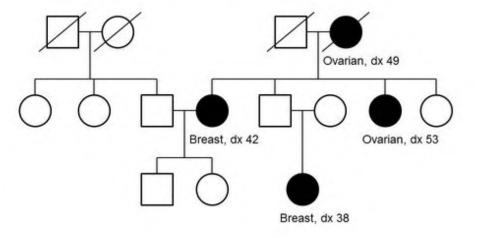
- Cranial nerve palsies
- Loss of independent ambulation

Peripheral Nervous System


- Axonal sensorimotor neuropathy


LABORATORY ABNORMALITIES

- Abnormal acylcarnitine profiles


Riboflavin transport deficiency

A diagnosis, the old fashioned way

Why don't we know more?

Why don't we know more?

Phenotype risk score (PheRS)

A method to create Mendelian disease phenotypes

- Uses EHR data (billing codes)
- Enables a population level scan of Mendelian disease variants

MARFAN SYNDROME

HEAD & NECK

Eyes

- Retinal detachment
- Iris hypoplasia

CARDIOVASCULAR

Heart

- Aortic regurgitation

Vascular

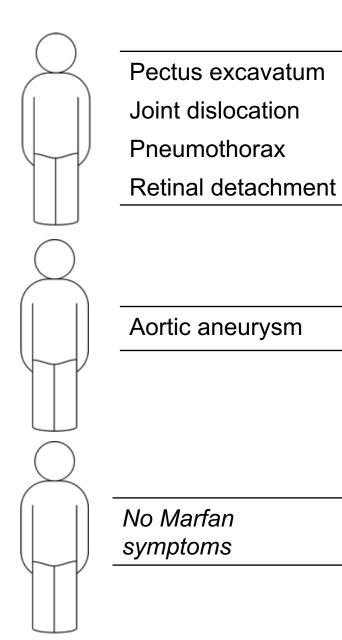
- Aortic root dilatation
- Aortic dissection

SKELETAL

Limbs

- Joint hypermobility

CHEST


Ribs Sternum Clavicles & Scapulae

- Pectus excavatum

RESPIRATORY

Lung

- Pneumothorax

MARFAN SYNDROME

HEAD & NECK

Eyes

- Retinal detachment
- Iris hypoplasia

CARDIOVASCULAR

Heart

- Aortic regurgitation

Vascular

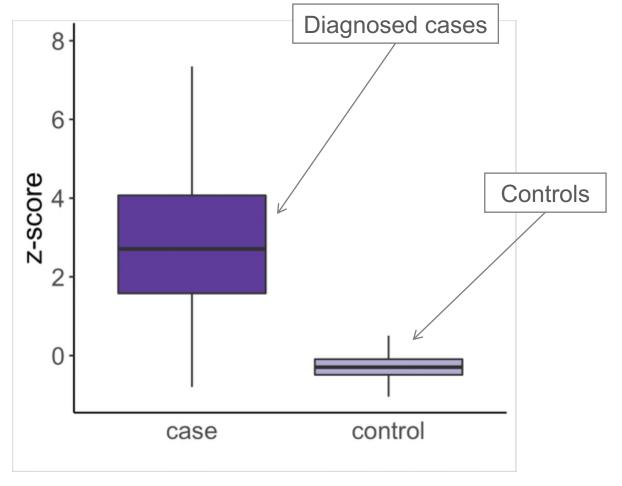
- Aortic root dilatation
- Aortic dissection

SKELETAL

Limbs

Joint hypermobility

CHEST


Ribs Sternum Clavicles & Scapulae

- Pectus excavatum

RESPIRATORY

Lung

- Pneumothorax

You can differentiate individuals diagnosed with Marfan syndrome using only the features of the disease

RESEARCH ARTICLE

HUMAN GENOMICS

Endocrine/Metabolic/Blood

Phenotype risk scores identify patients with unrecognized Mendelian disease patterns

Nervous/Psychiatric/Sensory

Circulatory/Respiratory

Gene	Variant	ralD	HOM	Associated Mendellan Disease	OMIM Reported Inheritance	Phenotype categories in PheRS	Beta	P	ClinVar	HGMD	ACMG
CFTR	c 1624G>T p.Gly542Ter	rs113993959	1/27	Cystic fibrosis	AB		1.39	2.9×10 ⁻⁹	Р	Υ.	P
CHRNA4	c.1448G>A p.Arg483Gin	rs55855125	1/21	Nocturnal frontal lobe epilepsy, 1	AD		0.58	9.0×10 ⁻⁸	U		U
DGKE	c.966G5A p.Trp322Ter	18138924661	1/14	Nephrotic syndrome, type 7	AR		1.31	2.8×10 ⁻⁷	LP	Υ	Lp→b
SUOX	c.228G>T p.Arg76Ser	ts202085145	0/24	Sulfocysteinuria	AR		0.82	1.7×10 ⁻⁰	Ü		U→P
CFTR	c.1657C>T p.Arg553Ter	rs74597325	0/12	Cystic fibrosis	AR		1.81	2.1×10 ⁻⁶	P	Y	P
KIF1B	p.Thr674lle	rs41274468	0/21	Charcot-Marie-Tooth disease, 2A1	AD		0.79	5.3×10 ⁻⁶			U
VWF	c.5851AsG p.Thr1951Ala	rs144072210	0/21	Von Willebrand disease	AR*		0.53	8.6×10 ⁻⁶		Y	U
KIF1A	c.2676C>T p.Ala993=	rs116297894	1/25	Spastic paraplegia-30	AR		0.84	1.3×10 ⁻⁵	LB		LB-U
F10	c.872G>A p.Arg291Gin	rs149212700	0/15	Factor X deficiency	AR*		0.62	1.9×10 ⁻⁵			U
HFE	c.502G>C p.Glu168Gin	rs146519482	0/40	Hemochromatosis	AR		1.08	4.0×10 ⁻⁵	U	Y	0
TG	c.229G>A p.Gly77Ser	rs142698837	0/69	Thyroid dyshormonogenesis	AR		0.26	6.0×10 ⁻⁵		Y	N→b
SH2B3	c.1183G>A p.Glu395Lys	rs148636776	0/22	Familial erythrocytosis, 1	AD		1.48	6.1×10 ⁻⁵	-		U→P
SPTBN2	c.7109G>A p.Arg2370His	rs145522851	0/11	Spinocerebellar ataxia	AR*		0.75	9.0×10 ⁻⁵			U-LP
FAN1	c.1520G>A p.Arg507His	rs150393409	0/434	Interstitial nephritis, karyomegalic	AR		0.15	9.9×10 ⁻⁵			LB→U
PANK2	c.1561G>A p.Gly521Arg	rs137852959	0/26	HARP syndrome	AR		0.58	1.1×10 ⁻⁴	p.	4	p.
SH2B3	c.1183G>A p.Glu395Lys	rs148636776	0/22	Essential thrombocythemia	AD		0.33	1.4×10 ⁻⁴			Ú-p
AGXT	c.883G>A p.Ala295Thr	rs13408961	1/35	Primary hyperoxaluria, type I	AR		0.82	1.7×10 ⁻⁴	U/LB		LB→U
PLCG2	c.751A>G p.lle251Val	rs190840748	0/10	Familial cold autoinflammatory syn. 3	AD		0.70	1.9×10 ⁻⁴			U

Digestive/Genitourinary

Musculoskeletal/Dermatologic

Other symptoms/Injuries

Tested

6644 variant/disease pairs

Found

18 significant associations

Do patients with X variant have a higher PheRS?

<u>eMERGEseq</u>

- 15,000 patients sequenced for 109 genes
- 9 clinical sites
- Demographics, billing codes, sequence

High-throughput *FBN1* variant readout

p.N1282S

p.A2025S

p.P1148A

Benign -0.2

p.L2815L

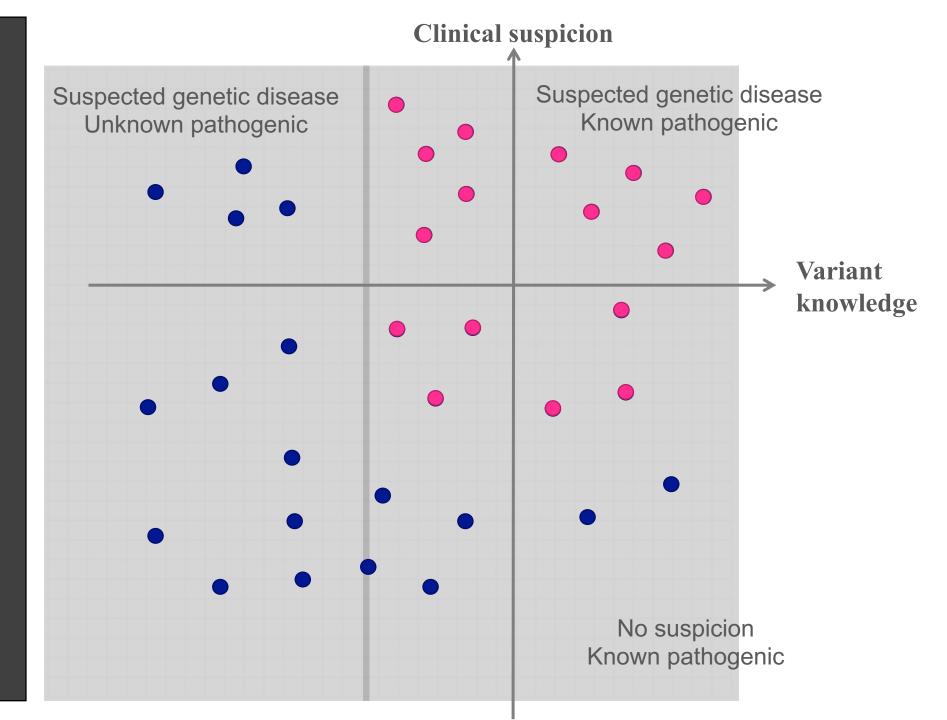
p.Q2296Q

0 0.4 0.1 0.4 0.1 0.1

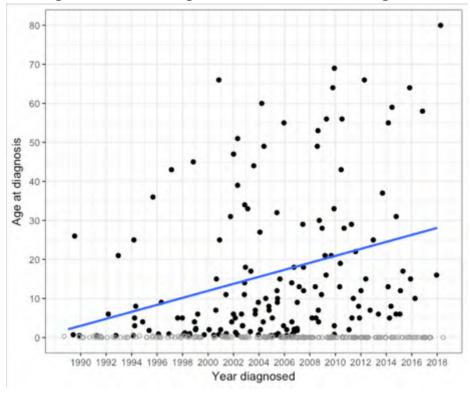
p.D2285D

p.C685C

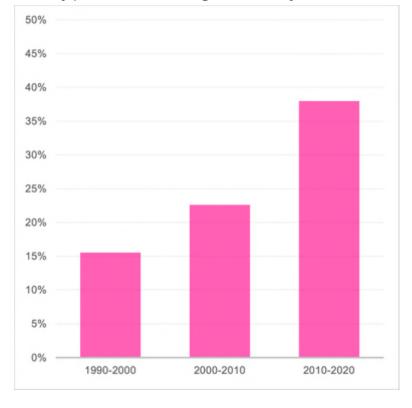
p.D964D

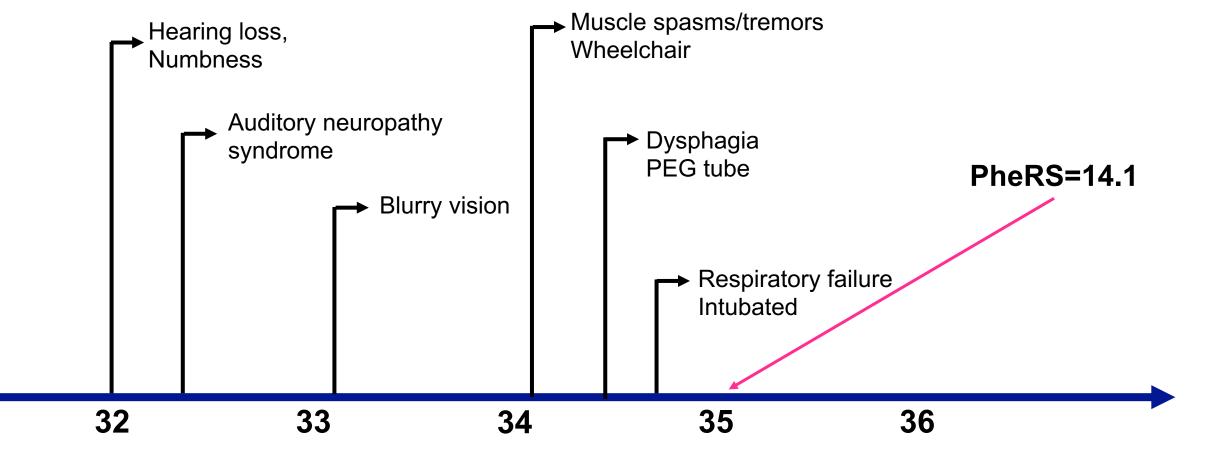

p.A52A

p.D2860G	p.K2851E	p.K2848T	p.V2771I	p.N2767S	p.R2730Q	p.G2727S	p.R2726Q	p.A2714V	p.G2691S
3.7	2.3	0.6	-0.4	-0.1	0.2	-0.7	-0.8	0	-0.5
p.P2676L	p.G2618R	p.12616M	p.l2616V	p.T2520M	p.K2510R	p.Q2477R	p.Q2467R	p.K2460R	p.R2414Q
0.3	-0.2	1.9	0	-0.1	1.1	0	-1	-0.6	-0.8
p.G2367R	p.S2361W	p.G2351S	p.C2339Y	p.R2311H	p.M22731	p.E2193K	p.V2165L	p.N1975N	p.P1837S
0.5	2.5	0.7	1.7	1	-1.4	-0.1	-0.5	-0.4	0.7
p.R1832H	p.G1780G	p.V1667I	p.R1644Q	p.M1576T	p.I1498V	p.G1482S	p.P1453L	p.D1448N	p.G1441R
-0.8	0.4	-0.2	-0.5	0.4	0.2	-0.5	0.1	0.5	0.2
p.A1439G	p.S1438N	p.P1424A	p.L1405R	p.M1384V	p.I1359V	p.G1334D	p.Y1266F	p.N1168S	p.l1154l
-0.1	-0.3	-0.1	0.7	1.9	0.1	-0.3	0.4	0	0.1
p.G1143G	p.H1130R	p.G1126S	p.I1076L	p.R1066T	p.G1049S	p.P1009R	p.E1005K	p.V984V	p.V9841
0.4	0.4	-1.2	-0.2	-0.1	-0.1	-0.2	0.4	-1	0.5
p.M977R	p.E965K	p.E965Q	p.L925V	p.V916M	p.E915K	p.N867S	p.1849M	p.E812K	p.P698L
0	-0.4	-0.8	1.7	0.3	-0.2	0.2	-0.1	-0.6	0.8
p.A686T	p.P673S	p.T524M	p.V449I	p.P430L	p.G422E	p.M393V	p.R327T	p.D288G	p.N156S
-0.2	0.2	0	0.2	0.5	0.3	-0.3	-0.1	0	0.1
p.Q117R	p.N28S								
5.6	0.5								


Variants of Uncertain Significance

Two reasons patients remain undiagnosed




Making a Cystic Fibrosis diagnosis, not just for pediatricians anymore

Atypical CF diagnosis by decade

Josh Denny

Dan Roden

Nancy Cox

Leigh Anne Tang

Andrea Ramirez

Randy Miller

Jonathan Mosley

Julie Bastarache

Sara Van Driest

Rizwan Hamid

Joy Cogan

John Newman

VANDERBILT VUNIVERSITY

MEDICAL CENTER

Doug Ruderfer

Wei-Qi Wei

Mike Noto

Jake Hughey

John Phillips