Purification and Characterization of the Acyl Carrier Protein of the Streptomyces glaucescens Tetracenomycin C Polyketide Synthase

BEN SHEN,¹ RICHARD G. SUMMERS,¹ HUGO GRAMAO,² MERVYN J. BIBB,² AND C. RICHARD HUTCHINSON³,4

School of Pharmacy¹ and Department of Bacteriology,² University of Wisconsin, Madison, Wisconsin 53706, and John Innes and AFRC Institute of Plant Science, Norwich NR4 7UH, United Kingdom²

Received 14 January 1992/Accepted 3 April 1992

The acyl carrier protein (ACP) of the tetracenomycin C polyketide synthase, encoded by the tcmM gene, has been expressed in both Streptomyces glaucescens and Escherichia coli and purified to homogeneity. Expression of the tcmM gene in E. coli results mainly in the TcmM apo-ACP, whereas expression in S. glaucescens yields solely the holo-ACP. The purified holo-TcmM is active in a malonyl coenzyme A:ACP transacylase assay and is labeled by radioactive β-alanine, confirming that it carries a 4'-phosphopantetheine prosthetic group.

Polyketide synthases (PKSs) are key enzymes for the biosynthesis of polyketides, one of the largest groups of secondary metabolites, and have been classified into two categories. Type I PKSs are large multifunctional proteins, such as 6-methylsalicylic acid synthase from Penicillium patulum (1) and the recently reported ermA PKS for erythromycin biosynthesis in Saccharopolyspora erythraea (4, 6); type II PKSs, in contrast, are multiprotein complexes consisting of several individual enzymes. Molecular genetic analyses of several streptomyces have led to the characterization of the genes encoding a number of different type II PKSs (11). These studies have revealed a highly conserved gene organization and a high degree of amino acid sequence similarity. Knowledge of PKS enzymology has languished, however, because of the apparent intractability of in vitro assay and purification of the constituent enzymes.

We are studying the tetracenomycin (TCM) C PKS of Streptomyces glaucescens (2) as a model of the type II enzymes to provide answers to some of the intriguing questions concerning the enzymology of such proteins. In this article, we describe the expression, in both S. glaucescens and Escherichia coli, of the tcmM acyl carrier protein (ACP) gene and the subsequent purification of this ACP in its holoenzyme form. With the availability of the TcmM protein in large quantity, we can study its structure and explore its interaction with other components of the TCM PKS.

Malonyl-CoA:ACP transacylase assay. The TcmM ACP was assayed for its ability to serve as an acceptor of malonate from malonyl coenzyme A (malonyl-CoA) catalyzed by a crude malonyl-CoA transacylase of S. glaucescens. Cells in the mid-exponential phase of growth were suspended in 100 mM sodium phosphate (pH 7.2)–2 mM diithiothreitol (DTT)–0.1 mM phenylmethylsulfonyl fluoride–1 mM EDTA–10% glycerol (10 ml/g of cells). Lysosome (2 mg/ml) was added, and the mixture was allowed to incubate at room temperature for 2 h. To this viscous slurry, solid MgCl₂ was added to a final concentration of 25 mM, followed by about 0.5 mg of DNase. The resulting slurry was incubated on ice for 1 h and then centrifuged (13,600 × g, 20 min, 4°C) to yield a cell extract. The extract was brought to 0.3 M NaCl and 0.1% polyethyleneimine by adding solid NaCl and a neutral 10% (vol/vol) solution of polyethyleneimine, and the mixture was centrifuged as described before to give a clear supernatant. Solid ammonium sulfate (30% v/v) was added to the supernatant with stirring, and the precipitate resulting after centrifugation (25,420 × g, 20 min, 4°C) was discarded. More ammonium sulfate (208 g/liter) was added to the supernatant, and the preparation was again centrifuged as described before to collect the pellet that contained the malonyl-CoA transacylase. This pellet was taken up in 20 mM sodium phosphate (pH 7.2)–2 mM DTT–20% glycerol (buffer I) to a final protein concentration of 5 mg/ml and was used as the malonyl-CoA transacylase in the ACP assay described below.

A typical TcmM assay solution contained 20 mM sodium phosphate (pH 7.2), 2 mM DTT, 10 μl of the malonyl-CoA transacylase, 10 μl of [2-14C]malonyl-CoA in 10 mM phosphoric acid (pH 3.5) (8,000 cpm), and the ACP sample (10 to 50 μl) in a final volume of 100 μl. The complete assay solution without malonyl-CoA was preincubated at room temperature for 10 min, the reaction was then started by the addition of malonyl-CoA, and the assay was terminated after 1.5 min by the addition of 100 μl of a bovine serum albumin solution (10 mg/ml) and 400 μl of a 20% (vol/vol) trichloroacetic acid solution. Precipitated proteins were collected on a GF/B filter (Whatman, Maidstone, England) and washed with a 10% (vol/vol) trichloroacetic acid solution. The precipitated [2-14C]malonyl-CoA–ACP retained on the filter was counted to determine the TcmM activity after subtraction of the activity observed in appropriate blank controls.

Expression of the tcmM gene in S. glaucescens yields solely the TcmM holo-ACP. To express the tcmM gene, pWHM701 was constructed as follows. A 1.1-kb SpH1-SsrI fragment that carries the tcmM gene was transferred from pWHM114 (2) into replicative form M13mp18 (22), similarly digested. An SpH1 site was then introduced at the beginning of the tcmM gene by using the Amersham oligonucleotide-directed in vitro mutagenesis system (Amersham Corp., Arlington Heights, Ill.) and the synthetic oligodeoxynucleotide 5'-GGAGGTTCCGACGTGCCCCAG-3'. Creation of the SpH1 site required two nucleotide changes (underlined); the G-to-A transition replaced the wild-type GTG translation initiation codon of tcmM with an ATG codon. The entire tcmM gene was sequenced and transferred as a 314-bp SpH1-SsrI fragment into pJ702 (13), analogously digested. This places the tcmM gene downstream of the putative...
TABLE 1. A summary of the steps for the purification of the TcmM ACP produced in *S. glaucescens* and *E. coli*

Steps*	Protein (mg) in		
	S. glaucescens cells	Exponential-phase *E. coli* cells	Stationary-phase *E. coli* cells
Crude cell extract	4,500	754.4	517.7
PEF precipitation (supernatant)	4,100	731.4	485.8
(NH₄)₂SO₄ and glacial acetic acid precipitation (pellet)	982	112.0	210.0
Q Sepharose	81.5		
Sephacryl S-200			
Mono Q	28.5	22.2	17.7
Phenyl Superose	0.855	0.775	0.828 (apoenzyme form)
Superose 6	0.44		0.053 (holoenzyme form)

* As described in the text.
* From 70 g of cells.
* From 5.5 g of cells.
* From 33 g of cells.
* PEF, polyethyleneimine.

The results of purification of the TcmM ACP produced in *S. glaucescens* are summarized in Table 1. Like various fatty acid synthase (FAS) ACPS (17, 18), the Tcm PKS ACP behaves abnormally on a gel filtration column with an apparent *M*ₐ of 21,000 and in SDS-PAGE with an apparent *M*ₐ of 5,500 (8). (The expected *M*ₐ is 9,292 [2].) Purified TcmM is active in the malonyl-CoA-ACP transacylase assay, suggesting that the apo-ACP has been posttranslationally modified by the attachment of the 4'-phosphopantetheine prosthetic group. This was confirmed by in vivo labeling with [3-³H]β-alanine, which specifically labels the 4'-phosphopantetheine group (9, 12, 21): [³H]TcmM was recovered from *S. glaucescens* WMH1077(pWHM701) that had been grown in 500 ml of R2YENG medium containing thioseptone (20 μg/ml) and [³H]β-alanine (10 μCi).

Expression of the tcmM gene in *E. coli*

main results in the TcmM apo-ACP. *E. coli* K38 transformed with plasmids pGFI-2 and pIJ2238 (8) was used as described by Gramajo et al. (8). Cells were grown at 30°C in 2× YT medium (8) containing kanamycin and ampicillin (50 μg/ml each). After dialysis, the culture reached an *A*₆₀₀ of 1.5 to 2.0 (exponential phase of growth), the temperature was shifted to 42°C and growth was continued for 2 h. Cells (5.5 g/liter) were then harvested and washed sequentially with 0.5 M NaCl and 0.1 M sodium phosphate (pH 7.2). TcmM was purified to homogeneity by the procedure described above with the following exceptions. The combined ammonium sulfate and glacial acetic acid pellets were dissolved in a minimum volume of buffer I and I applied to a Sephacryl S-200 HR (Pharmacia) column (2.6 by 60 cm). Fractions were collected by elution with buffer V at room temperature at a flow rate of 2.0 ml/min. After gel filtration, the ACP was further purified on Mono Q HR 10/10 and Phenyl Superose HR 5/5 columns as described earlier (Table 1). After desalting by passage through a Vydac (Hesperia, Calif.) protein C₄ reverse-phase high-pressure liquid chromatography column developed with a linear 50-mll gradient from 5 to 95% acetonitrile in 0.1% trifluoroacetic acid at a flow rate of 1.0 ml/min, the amino-terminal sequence of the purified TcmM was determined by the automated Edman degradation method. The first 10 amino acid residues (the V shown in Fig. 2 was not present) were identical to those predicted from the sequence of the tcmM gene (2).

Interestingly, the TcmM ACP purified from *E. coli* was inactive in the malonyl-CoA-ACP transacylase assay. To determine if this ACP was modified by attachment of the
4'-phosphopantetheine prosthetic group, a sample of the purified ACP was analyzed by electrospray mass spectrometry (3, 17). The major peak had a molecular weight of 8,963.33 ± 6.76, which is in reasonable agreement with the molecular weight of the apoenzyme (8,951.88) predicted from the sequence of the \textit{tcmm} gene. The same sample was also analyzed by 31P nuclear magnetic resonance (19), and no 31P resonance was observed, confirming the absence of the 4'-phosphopantetheine group. Finally, when \textit{E. coli} K38(pGPl-2/pIJ2238) was grown in 2x YT medium containing kanamycin and ampicillin (50 µg/ml each) and [3-15N]alanine (10 µCi), the purified TcmM ACP was not 15N labeled in vivo, although the \textit{E. coli} FAS ACP was labeled in this experiment (data not shown).

In most cases, ACP genes from diverse species are expressed in \textit{E. coli} exclusively (7, 9) or predominantly in their holoenzyme form (17). Since this was not our experience, the conditions for producing the TcmM holo-ACP in \textit{E. coli} were explored. We observed that the ratio of apo- to holo-ACP varied as a function of the growth conditions of \textit{E. coli} K38(pGPl-2/pIJ2238). To increase the amount of the holo-ACP, \textit{E. coli} K38(pGPl-2/pIJ2238) was grown at 30°C in 2x YT medium containing kanamycin and ampicillin (50 µg/ml each) to an A_{600} of approximately 10 (stationary phase of growth). The temperature was raised to 42°C for 30 min and then lowered to 30°C for an additional 2 h. The cells (4.4 g/liter) were harvested and washed, and TcmM was purified as described earlier, during which we found that the TcmM apo- and holo-ACPs could be resolved on Mono Q or Phenyl Superose columns. As summarized in Table 1, 5 to 10% of the total TcmM isolated from the stationary-phase cells was in the holoenzyme form and was active in the malonyl-CoA-ACP transacylase assay.

It is interesting that induction of expression of the \textit{tcmm} gene in \textit{E. coli} stationary-phase cells results in the production of the TcmM holo-ACP to a small extent. It may be that the concentration of the \textit{E. coli} ACP synthetase that transfers the 4'-phosphopantetheine group from CoA to a serine residue of the ACP (16) (see Fig. 2) is higher in the stationary phase of growth than in the exponential phase of growth or that the concentration of the competing FAS apo-ACP is lower. The shorter duration of the heat induction with the stationary-phase cells may also have reduced the risk of inactivation of the \textit{E. coli} ACP synthetase (3). Alternatively, the apo-TcmM might have resulted from rapid degradation of the holo-TcmM by the \textit{E. coli} ACP phosphodiesterase (16).

Western blot (immunoblot) analysis of TcmM apo- and holo-ACP produced in \textit{E. coli} and \textit{S. glaucescens}. ACPs tend to undergo conformational changes in alkaline pH, and different forms can be resolved by conformationally sensitive PAGE analysis (19). With the purified TcmM apo- and holo-ACPs as standards, conditions for conformationally sensitive PAGE were developed to resolve the TcmM apo- and holo-ACPs on 20% polyacrylamide gels under reducing conditions (19) (Fig. 1, lanes 3 to 5). Cross-reactivity among ACPs from diverse species is known, leading to the conclusion that such proteins have similar three-dimensional conformations or, at least, similar epitopes (9, 14). This led us to examine whether anti-TcmM ACP antibodies cross-react with other ACPs. Anti-TcmM antibodies raised against denatured TcmM apo-ACP in rabbits by standard methods (10) reacted specifically with the TcmM apo- and holo-ACPs (Fig. 1, lanes 3 to 5 and 10). Cross-reactivity between the anti-TcmM and the \textit{E. coli} or \textit{S. glaucescens} FAS ACPs was not observed, however, nor was there cross-reactivity between anti-\textit{E. coli} FAS ACP (12) and the TcmM apo- and holo-ACPs (data not shown). Thus, there could be a significant overall conformational difference between the \textit{E. coli} FAS ACP and the TCM PKS ACP, even though the region surrounding prosthetic group attachment site serine is highly conserved among TcmM and other ACPs (11) (Fig. 2). These results suggest that the poor yield of holo-TcmM from \textit{E. coli} may result from poor recognition of the TcmM substrate by \textit{E. coli} ACP synthetase, even though this enzyme has been reported to have relatively broad substrate specificity (7, 9, 17).

Finally, we determined the extent to which the TcmM apo-ACP is modified in \textit{S. glaucescens} by attachment of the prosthetic group, since in \textit{E. coli} it appears that all of the FAS ACP is maintained in the holoenzyme form (12). Cultures of wild-type \textit{S. glaucescens} were grown in
C. was harvested, washed, and cell extracts were prepared as described earlier. As expected, the TcmM holo-ACP was not observed in the cell extract prepared from E. coli cells induced in the exponential phase of growth (Fig. 1, lane 1), while the holo-ACP was readily detected in the extract from E. coli cells induced in the stationary phase of growth, although the apo-ACP predominated (Fig. 1, lane 2). In contrast, only the holo-ACP was produced in S. glaucescens over the 28-h period (Fig. 1, lanes 6 to 9), implying the presence of a very active ACP synthetase. This finding indicates that the ratio of apoenzym to holoenzyme forms of TcmM is unlikely to play a regulatory role in polyketide biosynthesis. This is one reason that we have been able to increase the production of TCM biosynthetic intermediates by introducing extra copies of the tcmM gene into S. glaucescens, which ultimately increases the production of the TcmM holo-ACP (5). As expected from the timing of TCM C production (5), expression of the tcmM gene was not detected in S. glaucescens until 18 h (Fig. 1, lanes 6 to 8). This coincides with the time of expression of tcmK gene (8).

We thank Peter F. Leadlay (University of Cambridge, Cambridge, United Kingdom) for the measurement of the electrospray mass spectrum, James H. Prestegard (Yale University) for recording the 31P nuclear magnetic resonance spectrum, Charles O. Rock (St. Jude Children’s Research Hospital) for providing E. coli ACP antibodies, and William L. Wessel for useful discussions.

This work was supported by National Institutes of Health grant CA 35381.

REFERENCES

