Scripps Research Logo

Thomas Bannister, Ph.D.

Associate Scientific Director II
Assistant Professor of Medicinal Chemistry (Chemistry Dept.)
Translational Research Institute
Florida Campus
(561) 228-2206

Other Joint Appointments

Assistant Professor of Medicinal Chemistry, Department of Chemistry
Associate Scientific Director, Department of Chemistry

Research Focus

Organic/Medicinal Chemistry and Drug Discovery. The discovery of possible drug candidates is a highly collaborative endeavor, with medicinal chemistry as a core, problem-solving component.  Our major efforts are thus joint projects with world experts in cancer biology and neuroscience, wherein our group provides the organic and medicinal chemistry expertise. 

Our cancer projects target unique metabolic phenotypes of tumor cells, identifying defining molecular characteristics to be exploited for the development of targeted therapies. Most tumor types have a shared reliance upon active transport of nutrients and building blocks to drive rapid cancer cell growth and to sustain survival. They also largely rely upon glycolysis for ATP production (the Warburg effect). As examples, we have created molecules to keep tumor cells from exporting lactate, the end product of glycolysis.  We have also designed compounds to block amino acid transporters that are up-regulated by many tumors.

In our neuroscience studies we are developing GPCR agonists that have targeted effects in the brain, including a recently-identified tool compound with promise in an animal model of post-traumatic stress disorder (PTSD). We are also exploring GPCR signaling bias in opioid receptor activation, aiming for a holy grail of sorts: to separate the robust pain relief provided by opiates from their many unwanted side effects. This collaboration with Laura Bohn's group has led to pain relievers that seem to be devoid of many of the side effects of morphine and related opiates, such as respiratory suppression, heart rate effects, and GI effects (constipation).

Other exploratory efforts use medicinal chemistry in concert with high-throughput screening, where we seek to discover and optimize "chemical probes", or first-in-class small molecules that should prove useful for investigating the therapeutic potential of new target proteins.  Such probe development efforts encompass multiple therapeutic areas, including treatments for cancers, glaucoma, ALS, addiction, infectious diseases, and mood disorders.

Postdoctoral fellows in my group benefit from interactions not only with other chemists but with top biologists and pharmacologists, as they partake in project team meetings as well as in our weekly group meetings.


A.B., chemistry, minors biology and mathematics, Summa Cum Laude, Wabash College, 1984
M.S., organic chemistry, Yale University, 1986
M.S., asymmetric synthesis, Yale University, 1987
Ph.D., natural products synthesis, Indiana University, 1991

Professional Experience

1991-1997: Marion Merrell Dow Pharmaceuticals (MMD) in Cincinnati, Ohio, a company subsequently renamed several times after mergers and acquisitions (Hoechst Marion Roussel, Aventis, Sanofi-Aventis, Sanofi, etc.). My work there included efforts to discover and develop agents for hypertension and congestive heart failure and also compounds to treat respiratory diseases and CNS disorders.

1997-2001: Sepracor Inc. in Marlborough, Massachusetts. At Sepracor, a company founded based upon chiral drug technologies, my work involved efforts to discover agents to treat drug-resistant bacterial infections, agents for pain relief, and compounds for use as antidepressants.

2002-2005: Daiichi Asubio LLC (aka “Daiamed”), in Cambridge, Massachusetts, a US subsidiary of Daiichi Pharmaceuticals,   I was a group leader in medicinal chemistry at where I worked toward the discovery of new anticoagulants and immunosuppressants.

2005-present: Scripps Florida, named Associate Director in the Translational Research Institute, a research unit aimed at drug discovery and managed by chemists and biologists with extensive experience in the pharmaceutical industry. At Scripps Florida, Success in obtaining grant funding as a Principal Investigator led to a full faculty appointment in 2010. 

Awards & Professional Activities

2008-2010: Member, Long Range Planning Committee (LRPC), Medicinal Chemistry Division of the ACS
2015: Chair, ACS Medicinal Chemistry Long Range Planning Committee (a nationally elected position)
2016: Chair, ACS Medicinal Chemistry Executive Committee (a nationally elected position)

Selected References

I have authored in total over 70 published patents and peer-reviewed journal articles related to drug discovery and medicinal/organic chemistry.  

An on-line listing of most of my peer-reviewed pubmed-indexed journal publications can be found at:

Selected publications since 2013 include: 

Synthesis and Structure-Activity Relationships of Pteridine Dione and Trione Monocarboxylate Transporter 1 Inhibitors.
Wang, H. & and Bannister, T.D.
Journal of Medicinal Chemistry, 2014, 57 (17), 7317–7324. PMCID: PMC4161152.

Preparation of tetrasubstituted pyrimido[4,5-d]pyrimidine diones.
Wang, H., Wang, C., Bannister, T,D.
Tetrahedron Lett., 2015, 56 (15), 1949–1952.

One-Pot Directed Alkylation/Deprotection Strategy for the Synthesis of Substituted Pyrrole[3,4-d]pyridazinones.
Nair R.N., Bannister T.D.
Eur. J. Org. Chem., 2015, 1764–1770.

Grubbs Cross-Metathesis Pathway for a Scalable Synthesis of gamma-keto alpha,beta- unsaturated Esters.
Nair, R. & Bannister, T.D.
Journal of Organic Chemistry, 2014,79(3), 1467–1472.  PMCID: PMC3985456. 

Amygdala-Dependent Fear Is Regulated by Oprl1 in Mice and Humans with PTSD
Andero, R.; Brothers, S.P.;, Jovanoviv, T.; Chen, Y-T, Salah-Uddin, H.; Cameron, M.; Bannister, T.D.; Almli, L.; Stevens, J.S.; Bradley, B.; Bonder, E.B.; Wahlestedt, C. & Ressler, K.J.
Science Translational Medicine, 2013, 5, (188), 188ra73. PMCID: PMC3732318. 

Sequential Sonagashira and Larock Indole Synthesis Reactions in a General Strategy
To Prepare Biologically Active β-Carboline-Containing Alkaloids
Pan, X. & Bannister, T.D. 
Organic Letters, 2014, 16(23), 6124–6127. PMCID: PMC4260633.

Identification of Potent Inhibitors of the Trypanosoma brucei Methionyl-tRNS Synthestase via High-Throughput Orthogonal Screening.
Pedro-Rosa, L., Buckner, F.S., Ranade, R.M., Eberhardt, C., Madoux, F., Gillespie, J.R., Koh, C.Y., Brown, S., Lohse, J., Verlinde, C.L.M., Fan, E., Bannister, T., Scampavia, L., Hol, W.M.G., Spicer, T., & Hodder, P. J.
Journal of Biomolecular Screening, 2015, 20(1), 122–130.  PMCID: PMC4378865.

Identification of Small Molecules that Disrupt Signaling between ABL and Its Positive Regulator RIN1.
Ting, P. Y., Damoiseaux, R.; Titz, B.; Bradley, K. A.; Graeber, T. G.; Fernández-Vega, V.; Bannister, T.D.; Chase, P.; Nair, R.; Scampavia, L.; Hodder, P.; Spicer, T.P.; Colicelli, J.
PLoS One, 2015, 10(3): e0121833. doi:10.1371 /journal.pone.0121833

Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis.
Doherty JR, Yang C, Scott KEN, Michael Cameron MD, Fallahi M, Li W, Hall MA, Amelio AL, Mishra JK, Li F, Tortosa M, Genau HM, Rounbehler RJ, Yungi L, Dang CV, K. Kumar KG, Butler AA, Bannister TD,  Hooper AT, Unsal-Kacmaz K, Roush WR and Cleveland JL.
Cancer Research, 2014, 74, 908-920.

Hydroxyquinoline-derived compounds and analoguing of selective MCL-1 inhibitors using a functional biomarker.
David J. Richard, Ryan Lena, Noel Blake, William E. Pierceall, Nicole E. Carlson, Thomas Bannister, Christina Eberhart Keller, Marcel Koenig, Yuanjun He, Dmitriy Minond, Jitendra Mishra, Timothy Spicer, Michael Cameron, Peter Hodder, and Michael H. Cardone
Bioorganic & Medicinal Chemistry Letters, 2013, 21, 6642-6649.

ML264: An Antitumor Agent that Potently and Selectively Inhibits Krüppel-like Factor Five (KLF5) Expression: A Probe for Studying Colon Cancer Development and Progression.
Agnieszka Bialkowska, Melissa Crisp, Franck Madoux, Tim Spicer, Ania Knapinska, Becky Mercer, Thomas D. Bannister, Yuanjun He, Sarwat Chowdhury, Michael Cameron, Vincent W. Yang, and Peter Hodder.  
Probe Reports from the NIH Molecular Libraries Program [Internet], March 7, 2013,

ML328: A Novel Dual Inhibitor of Bacterial AddAB and RecBCD Helicase-nuclease DNA Repair Enzymes.
TD Bannister, R Nair, T Spicer, V Fernandez Vega, C Eberhart, BA Mercer, M Cameron, S Schurer, SK Amundsen, A Karabulut, LM Londoño, GR Smith, and P Hodder.
Probe Reports from the NIH Molecular Libraries Program [Internet], April 5, 2013,

ML311: A Small Molecule that Potently and Selectively Disrupts the Protein-Protein Interaction of Mcl-1 and Bim: A Probe for Studying Lymphoid Tumorigenesis.
Thomas Bannister, Marcel Koenig, Yuanjun He, Jitendra Mishra, Tim Spicer, Dmitriy Minond, Adrian Saldanha, Becky A. Mercer, Michael Cameron, Ryan Lena, Nicole Carlson, David Richard, Michael Cardone, and Peter Hodder.
Probe Reports from the NIH Molecular Libraries Program [Internet], March 14, 2013,

ML345: A Small-Molecule Inhibitor of the Insulin-Degrading Enzyme (IDE).
TD Bannister, H Wang, SO Abdul-Hay, A Masson, F Madoux, J Ferguson, BA Mercer, S Schurer, A Zuhl, BF Cravatt, MA Leissring, and P Hodder.  
Probe Reports from the NIH Molecular Libraries Program [Internet], April 5, 2013,


Scripps Florida Scientists Awarded $3 Million to Develop New, More Effective Pain Treatments

Scripps Florida Scientist Awarded $700,000 to Develop New Treatments for Cocaine Addiction

A Lab with a View: Tom Bannister Looks for Potential New Drugs