MILESTONES IN MEDICAL SCIENCE:

Can A Natural Response to Cellular Stress Fight Cancer?

July 2015

Naturally occurring compounds known as "antitumor antibiotics" are known to impede cancer cell growth and multiplication, and some are already in use as chemotherapy agents. Recently, scientists from Scripps Florida, led by Ben Shen, vice chair of TSRI's Department of Chemistry, found that one antitumor antibiotic, called leinamycin (LNM) E1, can be activated by one of the body's natural responses to cellular stress. Once activated, the agent can kill prostate cancer cells.

Ben Shen is a professor at the Florida campus of The Scripps Research Institute.

"There is no proven drug right now with these activities," said Dr. Shen, senior author of the new study, "so this points the way toward a new therapeutic opportunity."

The study highlights the potential of LNM E1 for development as a "prodrug," a medication converted into an active therapy through a metabolic process in the body.

Dr. Shen's research has focused on developing natural products into potential therapies. As part of this effort, he heads the Natural Products Initiative at TSRI, a library that contains 500 pure natural products, 2,000 fractions, and 7,500 crude extracts prepared from 4,000 Actinomycetals.

Among these are "antitumor antibiotics" including LNM, which are produced by species of the soil dwelling bacterium Streptomyces and are known to impede cancer cell growth and multiplication.

In the new study, the Scripps Florida team collaborated with scientists at the University of Wisconsin-Madison to examine whether LNM E1 can be activated by reactive oxygen species, which are naturally occurring molecules containing oxygen that play essential roles in cell signaling. During times of stress, levels of reactive oxygen species can rise significantly and may trigger apoptosis or programmed cell death. It is now widely accepted that many cancer cells are, by their very nature, under high oxidative stress.

The results were promising. "Our study shows unambiguously that when LNM E1 is activated by cellular reactive oxygen species, it causes DNA damage and cell death in cancer cells," said Ming Ma, co-first author of the study with Sheng-Xiong Huang.

The team further demonstrated the therapeutic potential of LNM E1 by showing it to be effective against two prostate cancer cell lines, which are known to exist under high oxidative stress and with increased levels of reactive oxygen species.

The study also reveals critical new insights into LNM biosynthesis, setting the stage to tailor intermediate steps in the creation of new LNM analogues.

Subscribe to our monthly e-newsletter, At the Forefront, and be the first to know about the
latest scientific breakthroughs happening at TSRI.

Please enter your email address: