Welcome to the Damon Page Laboratory
My laboratory is focused on understanding how the components necessary for establishing the cellular architecture of the brain (neuronal and glial cell types) are generated and how these assemble into functional circuits that underlie behavior. The mechanisms by which these processes occur are largely unknown, and yet, disruptions can have enormous societal and personal consequences in the form of neurodevelopmental and neuropsychiatric disorders. Such disorders provide a window into the basic genetic and cellular mechanisms involved in building the brain. This insight may be used in turn to benefit those affected by mental illness, pointing to molecular targets for improved diagnostics and therapeutics.
Autism spectrum disorder (ASD) is one such disorder. ASD is characterized by a range of phenotypes, including deficits in social behavior, as well as an altered trajectory of brain growth in some cases. Clues to mechanisms come from reports that PTEN-PI3K-mTOR, monoamine, neuropeptide and synaptic signaling pathways have been implicated in ASD pathogenesis. Understanding how these risk factors influence brain and behavior will give us basic insight into how the brain develops and how this process is altered in ASD.
Along these lines, my laboratory makes use of transgenic and knockout mice to understand the biology of how risk factors for autism and related neurodevelopmental disorders influence the development of cell types and circuits underlying behavior, and to test efficacy of potential therapeutics. The PTEN-PI3K-mTOR pathway and neural systems relevant for autism and social behavior (e.g. serotonin and oxytocin/vasopressin) are areas of focus for our work.
We use a variety of techniques, including transgenic mice, histology, molecular cell biology, genomics, informatics, pharmacology, imaging and behavioral phenotyping.