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Abstract
Lysophosphatidic acid receptor subtype LPA1 is crucial for the initiation of neuropathic pain and
underlying changes, such as up-regulation of Ca2+ channel α2δ-1 subunit in dorsal root ganglia
(DRG), up-regulation of PKCγ in the spinal dorsal horn, and demyelination of dorsal root fibers. In
the present study, we further examined the involvement of LPA1 signaling in the reorganization of
Aβ-fiber-mediated spinal transmission, which is presumed to underlie neuropathic allodynia.
Following nerve injury, the phosphorylation of extracellular-signal regulated kinase (pERK) by Aβ-
fiber stimulation was observed in the superficial layer of spinal dorsal horn, where nociceptive C-
or Aδ-fibers are innervated, but not in sham-operated wild-type mice. However, the pERK signals
were largely abolished in LPA1 receptor knock-out (Lpar1-/-) mice, further supported by
quantitative analyses of pERK-positive cells. These results suggest that LPA1 receptor-mediated
signaling mechanisms also participate in functional cross-talk between Aβ- and C- or Aδ-fibers.

Findings
Peripheral nerve injury often accompanies with neuro-
pathic pain, which is characterized by stimulus-independ-
ent persistent pain or abnormal sensory perception of
pain such as hyperalgesia (exaggerated pain sensations as
a result of exposure to mildly noxious stimuli) and allody-
nia (pain perception on exposure to innocuous tactile
stimuli) [1,2]. The mechanisms of allodynia in particular
have been long speculated to involve abnormal spinal
input through the sprouted myelinated Aβ-fibers that nor-
mally conduct innocuous tactile stimuli [3,4]. Moreover,
the functional cross-talk between the damaged peripheral
sensory fibers causing abnormal spinal input is also pos-

tulated to function in neuropathic allodynia [5]. Phos-
phorylation of ERK (pERK) has been reported as a specific
marker for activated cells responding to nociceptive stim-
uli [6,7] and recent studies using immunohistochemical
analysis of pERK provided evidence for spinal reorganiza-
tion through Aβ-fibers in neuropathic pain models [8,9].
Most recently we have reported that the acute nerve injury
caused Aβ-fiber-induced pERK signals within the superfi-
cial region of spinal cord dorsal horn, where nociceptive
C- or Aδ-fibers are innervated [8]. In addition, it was
found that such novel Aβ-fiber-mediated pERK signals in
injured mice were blocked by NMDA receptor antagonists
that specifically block the nociceptive behaviors induced
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by C- or Aδ-fiber stimulation. This suggests a pharmaco-
logical switch in Aβ-fiber-mediated spinal neurotransmis-
sion in injured mice, considering the result that Aβ-fiber
stimulation-induced paw withdrawal behaviors were spe-
cifically blocked by AMPA/kainate receptor antagonist in
naïve mice [8]. These results suggest further that func-
tional reorganization of Aβ-fiber input to the spinal neu-
rons innervated by nociceptive C- or Aδ-fibers may
underlie mechanisms for neuropathic allodynia.

We previously demonstrated that LPA1 receptor signaling
is involved in the initiation of peripheral nerve injury-
induced neuropathic pain [2,5,10]. The nerve injury-
induced neuropathic pain, demyelination and underlying
molecular events were attenuated or abolished in LPA1
receptor-knock out (Lpar1-/-) mice. Most recently we also
characterized neuropathic pain by a novel electrical stim-
uli-induced paw withdrawal (EPW) test using a Neurom-
eter®. In this test, there was a significant decrease in
sensory perception threshold of Aδ- or Aβ-fiber stimula-
tion in mice with partial sciatic nerve injury [8], and this
type of allodynia was abolished in Lpar1-/- mice [11]. From
the fact that the basal nociceptive thresholds in behavioral
tests were not affected in Lpar1-/- mice [10,11], it is evident
that LPA1 receptor signaling works only after occurrence of
the nerve-injury. This view was supported by the recent
finding that nerve injury-induced neuropathic pain is
associated with the de novo synthesis of LPA, which is pro-
duced by a conversion of lysophosphatidylcholine (LPC)
through autotaxin (ATX) or lysophospholipase D (lyso-
PLD) [11,12]. In the present study, we further examined
the involvement of LPA1 receptor signaling in the spinal
reorganization through Aβ-fiber after the peripheral nerve
injury.

Male mutant mice lacking the LPA1 gene (Lpar1-/-)[13]
and their sibling wild-type mice from the same genetic
background (weighing 20–24 g) were used. All proce-
dures were approved by the Nagasaki University Animal
Care Committee and complied with the recommenda-
tions of the International Association for the Study of Pain
[14]. The partial sciatic nerve ligation injury was carried
out according to methods described previously [8,11]. On
day 7 after the sham or nerve injury operation, significant
thermal hyperalgesia and mechanical allodynia were
observed in wild-type mice, which were mostly abolished
in Lpar1-/- mice [10]. The procedures for Aβ-fiber specific
electrical stimulation were performed as described previ-
ously [8]. Briefly, the electrodes (Neurotron Inc., Balti-
more, MD) were fastened with tape to the operated right
planter surface and instep of deeply anesthetized mice.
After 10 min, transcutaneous nerve stimuli of 2000 Hz
with the current intensity of 1000 μA was applied using a
Neurometer® CPT/C (Neurotron Inc.) for 1 min. The con-
trol treatment was performed without electrical stimula-

tion. Two min after electrical stimulation, mice were
immediately perfused with ice-cold PBS, followed by cold
4% paraformaldehyde solution. The spinal cord (L4–5)
was removed and cut on a cryostat at a thickness of 30 μm
for pERK1/2 (pERK)-immunostaining. The sections were
incubated at 4°C overnight with primary antibody (anti-
phospho-p44/42 MAP kinase, 1:500, Cell Signaling Tech-
nology, MA), followed by incubation with the bioti-
nylated anti-rabbit IgG (1:500, Vector, CA). The
immunoreactivity was amplified with ABC kit (Vector,
CA) and visualized by incubation with a solution contain-
ing 0.02% 3,3'-diaminobenzidine tetrahydrochloride
(DAB; Dojindo, Japan). The immunoreactive cells show-
ing S/N ratio of 3.0 or more and a diameter of > 5 μm were
counted as pERK-positive neurons, as described previ-
ously [8]. The intensity in the gracile fasciculus regions of
white matter was considered as background activity.
pERK-positive neurons in the superficial laminae (I-II) of
dorsal horn from five sections of each mouse were
counted. Statistical comparison was performed using one-
way ANOVA with Tukey-Kramer multiple comparison
post-hoc analysis. The criterion of significance was estab-
lished at P < 0.05. All results are expressed as means ±
S.E.M. from 4–6 separate mice.

In sham-operated wild-type mice, no significant pERK sig-
nals were observed by the control treatment without elec-
trical stimulation or by transcutaneous nerve stimuli for
Aβ-fiber (2000 Hz, 1000 μA) in the L4–5 spinal dorsal
horn (Fig. 1A, B). Although the nerve-injury alone did not
induce pERK-signals (Fig, 1C), the Aβ-fiber-stimulation to
the paw of nerve-injured mice induced pERK-positive sig-
nals in the ipsilateral superficial dorsal horn (laminae I-
II), but not in the deeper regions of dorsal horn (lamina
III-V) (Fig. 1D), as previously reported [8]. In the sham-
operated Lpar1-/- mice, on the other hand, neither control
treatment nor Aβ-fiber-stimulation induced any pERK sig-
nals (Fig. 1E, F). Although the nerve-injury alone also
failed to induce pERK signals in Lpar1-/- mice, the Aβ-fiber-
stimulation-induced pERK signals were largely abolished
in nerve-injured Lpar1-/- mice (Fig. 1G, H). The number of
pERK-positive cells in spinal dorsal horn was also
increased in the nerve-injured wild-type mice after the Aβ-
fiber stimuli, and this increase was significantly sup-
pressed in Lpar1-/- mice (Fig. 1I).

In the present study, we demonstrated that Aβ-fiber-medi-
ated abnormal spinal input after the nerve injury was sig-
nificantly suppressed in Lpar1-/- mice. These data suggest
that the nerve injury-induced spinal reorganization
through Aβ-fiber is caused by LPA1 receptor-mediated sig-
naling. Extracellular signal-regulated kinases (ERKs),
major subfamilies of mitogen-activated protein kinases
(MAPKs), are phosphorylated following membrane depo-
larization and Ca2+ influx [15]. As the noxious stimulation
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rapidly activates ERK in superficial dorsal horn neurons,
the pERK expression could be used as a biochemical
marker of activated neurons [6]. Interestingly, we previ-
ously found that the pERK expression was specific for
nociceptive C-fiber- and Aδ-fiber perception through sub-
stance P-NK1 receptor- and glutamate-NMDA receptor-
dependent spinal transmission, using the transcutaneous
electrical nerve stimulations to the hind paw using the
Neurometer® [8]. Few ERK activation was observed after
innocuous Aβ-fiber-stimulation in sham-operated mice,
which is mediated through AMPA/kainate receptor spinal
transmission [8]. As previously discussed, the lack of
pERK signals after Aβ-fiber-stimulation may be attributa-
ble to the insufficient Ca2+ influx for ERK activation in spi-
nal neurons, because AMPA/kainate receptors have lower
Ca2+ permeability than NMDA receptors [16]. From the
findings that Aβ-fibers are normally innervated to the

neurons in lamina III-IV [17], and Aβ-fiber stimulation-
induced abnormal pain was blocked by NK1 or NMDA
receptor antagonist, but not by AMPA/kainate antagonist
[8], it is suggested that Aβ-fiber stimulation may cause a
stimulation of nociceptive pain pathway through a func-
tional cross-talk. We speculate that the direct contact
among different modalities of fibers and sprouted fibers
following LPA1-mediated demyelination may underlie
the functional cross-talk [2,5]. Alternatively sprouted fib-
ers derived from Aβ-fibers may innervate to the second-
order spinal neurons, which are normally innervated by
C- or Aδ-fibers [3,18].

In conclusion, LPA1 receptor-mediated signaling mecha-
nisms contribute to spinal neuronal reorganization
through Aβ-fiber and could contribute to mechanisms
underlying neuropathic allodynia.

Lack of Aβ-fiber stimulation-induced ERK activation in Lpar1-/- mice after nerve injuryFigure 1
Lack of Aβ-fiber stimulation-induced ERK activation in Lpar1-/- mice after nerve injury. (A-H) Representative pic-
tures of pERK signals in the ipsilateral spinal dorsal horn after the Aβ-fiber stimulation (2000 Hz) to the right hind paw (see 
Methods). Arrows in (D) indicate Aβ-fiber stimuli-specific pERK signals observed in wild-type nerve-injured mice. M: medial, L: 
lateral, D: dorsal, V: ventral. (I) Number of pERK-positive cells per section in ipsilateral dorsal horn. *:p < 0.05 vs. sham, #:p < 
0.05 vs. wild-type (WT). Data represent the means ± S.E.M. from experiments using 4–6 mice.
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