
Biochemical and Biophysical Research Communications 392 (2010) 207–211
Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc
Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates
streptozotocin-induced apoptosis of pancreatic b-cells

Toshiyuki Imasawa a,*, Kentaro Koike a, Isao Ishii b, Jerold Chun c, Yutaka Yatomi d

a Department of Internal Medicine, Division of Immunopathology, Clinical Research Center, Chiba-East National Hospital, 673 Nitona, Chuoh, Chiba 260-8712, Japan
b Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
c Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute,
10550 North Torrey Pines Road, La Jolla, CA 92037, USA
d Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 January 2010
Available online 12 January 2010

Keywords:
Blood glucose
Diabetes
Insulin
S1P2-deficient mice
S1P2-specific antagonist
0006-291X/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.bbrc.2010.01.016

Abbreviations: MAPK, mitogen-activated protein k
1-phosphate; S1P2, sphingosine 1-phosphate recep
TUNEL, terminal deoxynucleotidyl transferase-media
WT, wild-type.

* Corresponding author. Fax: +81 43 268 2613.
E-mail address: imasawa@cehpnet.com (T. Imasaw
Sphingosine 1-phosphate (S1P) is a potent sphingolipid mediator that acts through five cognate G pro-
tein-coupled receptors (S1P1–S1P5) and regulates many critical biological processes. Recent studies indi-
cated that S1P at nanomolar concentrations significantly reduces cytokine-induced apoptosis of
pancreatic b-cells in which genes for S1P1–S1P4 are co-expressed. However, the S1P receptor subtype(s)
involved in this effect remains to be clarified. In this study, we investigated the potential role of S1P2 in
streptozotocin (STZ)-induced apoptosis of pancreatic b-cells and progression of diabetes. S1P2-deficient
(S1P2

–/–) mice displayed a greater survive ability, lower blood glucose levels, and smaller numbers of
TUNEL-positive apoptotic b-cells to administration of a high dose of STZ than wild-type (WT) mice.
S1P2

–/– mice showed higher insulin/glucose ratios (an index of relative insulin deficiency) and larger insu-
lin-positive islet areas to administration of a low dose of STZ than WT mice. Moreover, administration of
JTE-013, a S1P2-specific antagonist, to WT mice ameliorated STZ-induced blood glucose elevation and
reduced the incidence of diabetes. Our findings indicate that blockade of S1P2 signaling attenuates
STZ-induced apoptosis of pancreatic b-cells and decreases the incidence of diabetes.

� 2010 Elsevier Inc. All rights reserved.
Introduction

Type 1 diabetes is an autoimmune disease that results in the
destruction of pancreatic b-cells, whereas type 2 diabetes is a much
more common disorder caused by insulin resistance and relative
insulin deficiency. Insulin resistance in type 2 diabetes is initially
managed by enhanced secretion of insulin from b-cells; however,
this may gradually lead to a decrease in b-cell mass and deteriora-
tion of key b-cell functions such as glucose-stimulated insulin
secretion. Therefore, b-cell failure is a key pathogenic process in
both type 1 and 2 diabetes [1,2].

Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator that
exhibits diverse biological functions in most cell types and regu-
lates many pathological processes, acting through five cognate
ll rights reserved.
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high-affinity receptors (S1P1–S1P5) [3,4]. S1P was found to
ameliorate cytokine-induced apoptosis of b-cells [5,6] in which
genes for S1P1–S1P4 are co-expressed [7]. Previous studies
demonstrated that S1P2 signaling induces intracellular calcium
mobilization leading to increased glucose uptake in myoblasts
[8], and RNA-based screening for genes that confer insulin resis-
tance to 3T 3-L1 adipocytes identified S1pr2 as a candidate [9],
suggesting that S1P2 plays an important role in the pathogenesis
of diabetes. In the present study, we examined the role of S1P2 in
streptozotocin (STZ)-induced apoptosis of b-cells and progression
of diabetes using S1P2-deficient (S1P2

–/–) mice as well as the
S1P2-specific antagonist JTE-013.

Materials and methods

Animals. S1P2
–/– mice were generated and genotyped as

described previously [10]. S1P2
–/– mice were backcrossed with

C57BL/6N (Clea Japan, Tokyo, Japan) for seven generations, and
thus, littermate wild-type (WT) mice or age-matched (8-week-
old) C57BL/6N were used as controls. All mice were fed ad libitum
with standard chow/water and kept under a 12-h light–dark cycle
in an air-conditioned room. All animal protocols were approved by
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Fig. 1. S1P2
–/– mice were more resistant to administration of a high dose of STZ. (A)

Kaplan–Meier survival analysis of WT and S1P2
–/– mice (n = 25 and 18, respectively)

after the final injection of a high dose of STZ (100 mg/kg for 2 days). (B) Blood
glucose levels of randomly fed, surviving WT and S1P2

–/– mice at the 15th week
after the final STZ injection (n = 9 and 13, respectively). The differences were
significant (*P < 0.05).
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the animal care and use committee of Chiba-East National
Hospital.

Induction of diabetes by STZ injection. Streptozotocin (STZ, Sigma)
was freshly dissolved in 20 mM citrate buffer (pH 4.5) and intra-
peritoneally administered under various conditions in each exper-
iment: 50 mg/kg body weight for 5 consecutive days (50 mg/kg for
5 days), 100 mg/kg for 1 day, or 100 mg/kg for 2 days. Control mice
received injections of the citrate buffer. JTE-013 (Calbiochem), a
specific S1P2 antagonist [11], was freshly dissolved in saline and
intraperitoneally administered at 4 mg/kg for 6 days (one shot
prior to STZ and five shots with STZ). Control mice received injec-
tions of saline. Blood was collected from the retro-orbital sinus of
anesthetized mice and blood glucose levels were measured using
the Accu-Chek Aviva system (Roche). Mice were diagnosed with
diabetes mellitus (DM) when their blood glucose levels were
P300 mg/dl on two consecutive days [12]. Serum insulin levels
were measured using an insulin RIA kit (Millipore) in accordance
with the manufacturer’s instructions.

Immunohistochemistry. Pancreata were quickly removed from
anesthetized mice, fixed with 3% formalin in phosphate-buffered
saline, and embedded in paraffin. To count islet cells, deparaffi-
nized pancreatic sections were immunostained with guinea pig
polyclonal anti-insulin antibody (Cell Marque, Rocklin, CA) using
a NexES IHC system (Ventana Medical Systems, Tucson, AZ). Full
area sizes (mm2) of pancreatic sections (single section per mouse)
were measured and the numbers of insulin-positive islets in each
section were counted. Apoptotic cells were detected using a termi-
nal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) assay (Apotag Kit; Chemicon) in accordance with the
manufacturer’s recommendations. Apoptotic cells per nm2 of islet
area were counted in P10 islets per section.

Statistical analysis. Results are expressed as mean ± SD. All
statistical analyses were performed using Dr. SPSS II for Windows
(SPSS Inc., Chicago, IL). The existence of significant differences
between two groups (with an accuracy of at least 95%) was ana-
lyzed using a two-tailed unpaired t-test. Kaplan–Meier analysis
was used to examine diabetes-free rates and survival rates, and
the differences were determined by log-rank tests. A value of
P < 0.05 was considered significant.
Results

S1P2
–/– mice were more resistant to administration of a high dose of

STZ

WT and S1P2
–/– males were intraperitoneally injected with a

high dose of STZ (100 mg/kg for 2 days), and their health status
was monitored every week until the 15th week after the final
injection. Forty percent (10/25) of WT mice died at the 2nd week,
increasing to 64.0% (16/25) by the 11th week. In contrast, S1P2

–/–

mice show lower death rates of 11.1% (2/18) and 27.7% (5/18),
respectively. Kaplan–Meier analysis indicates that S1P2

–/– mice
were significantly (P = 0.0334) more resistant to STZ toxicity than
WT mice (Fig. 1A). At the 15th week after the final injection, serum
glucose levels in surviving S1P2

–/– mice were significantly lower
than those in surviving WT mice (Fig. 1B).

More b-cells were preserved after STZ injection in S1P2
–/– mice

WT and S1P2
–/– males were injected with a low dose of STZ

(50 mg/kg for 5 days) so that all mice survived until at least the
30th day after the final injection, and blood glucose levels were
measured twice a week. There was no significant difference in glu-
cose levels between WT and S1P2

–/– mice (Fig. 2A). Eight of eleven
(72.7%) WT mice were diagnosed with diabetes compared with
only three of eight (37.5%) S1P2
–/– mice; however, Kaplan–Meier

analysis revealed no significant difference in diabetes-free rates
between the two groups (Fig. 2B). Although blood insulin levels
in S1P2

–/– mice were comparable to those in WT mice at the 30th
day after the final STZ injection (Fig. 2C), the insulin/glucose ratios
(an index of relative insulin deficiency [13]) were significantly
higher in S1P2

–/– mice than in WT mice (Fig. 2D). This indicates that
insulin was more efficiently secreted in response to blood glucose
elevation in S1P2

–/– mice than in WT mice. We counted the num-
bers of insulin-positive islets per pancreatic area at the 30th day
after STZ injection. Insulin-positive islets were much more abun-
dant in pancreatic sections from S1P2

–/– mice (Fig. 2E). The num-
bers of insulin-positive islets per pancreatic area in S1P2

–/– mice
were comparable to those in WT mice without STZ, because more
islet cells (per pancreatic area) withstood STZ-induced cytotoxicity
in S1P2

–/– mice (Fig. 2F). Taken together, these findings indicate
that more islet b-cells were preserved after STZ injection in
S1P2

–/– mice than in WT mice.

More islet cells were protected against STZ-induced apoptosis in
S1P2

–/– mice

The administration of STZ is known to induce apoptosis of islet
b-cells [13,14]. WT and S1P2

–/– males were intraperitoneally
injected with a high dose of STZ (100 mg/kg for 1 day), and apop-
tosis of islet cells was evaluated the following day. Histological
analysis revealed that TUNEL-positive apoptotic islet cells were
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Fig. 2. More b-cells were preserved after STZ injection in S1P2
–/– mice. WT and S1P2

–/– mice (n = 11 and 8, respectively) were administered a low dose of STZ (50 mg/kg for 5
consecutive days intraperitoneally). (A) Blood glucose levels in randomly fed WT and S1P2

–/– mice after STZ injection. (B) Kaplan–Meier analysis of diabetes-free rates after
STZ injection. (C) Serum insulin levels (ng/ml) at the 30th day after the final STZ injection. (D) Blood insulin/glucose ratios (�10�3) as an index of relative insulin deficiency at
the 30th day after the last STZ injection. (E) Representative images of insulin-positive islets in pancreas at the 30th day after the final STZ injection. Bars: 200 lm. (F) Numbers
of insulin-positive islets per pancreatic area (mm2) without (n = 5 each for WT and S1P2

–/– mice) or with STZ injection (at the 30th day after the final STZ injection). *P < 0.05
and **P < 0.01.
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less abundant in S1P2
–/– mice than in WT mice (Fig. 3A). The num-

ber of apoptotic cells per nm2 of islet area in S1P2
–/– mice was 27%

of that in WT mice (Fig. 3B), indicating that the lack of S1P2

protects islet cells from STZ-induced apoptosis.

JTE-013 decreased the incidence of diabetes

We examined the effect of JTE-013, a specific S1P2 antagonist,
on the incidence of STZ-induced diabetes. JTE-013 (4 mg/kg) was
intraperitoneally injected for 6 days (one shot prior to STZ and
five shots with STZ (50 mg/kg)), and blood glucose elevation after
the final STZ injection was examined every week. Glucose levels
at the 4th week after the final STZ injection were significantly
lower in JTE-013-treated mice than JTE-013-untreated mice
(Fig. 4A). Glucose levels were not indistinguishable between
JTE-013-treated and JTE-013-untreated mice in the absence of
STZ. Among STZ-injected mice, 71.4% (10/14) of JTE-013-un-
treated mice were found to be diabetic compared with only
14.3% (2/14) of JTE-013-treated mice by the 6th week after the
final STZ injection. Kaplan–Meier analysis indicates that JTE-013
treatment significantly (P = 0.0024) decreased the incidence of
diabetes (Fig. 4B).
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Fig. 3. More islet cells were protected against STZ-induced apoptosis in S1P2
–/–

mice. Mice were injected with a high dose of STZ (100 mg/kg for 1 day) and
apoptotic b-cells were identified by immunostaining. (A) TUNEL-positive apoptotic
b-cells in pancreatic sections obtained from WT and S1P2
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Numbers of apoptotic cells per islet area (nm2) of WT and S1P2

–/– mice (n = 10
each). The difference is significant (*P < 0.0001).
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Discussion

We found that the blockade of S1P2 signaling prevents the onset
of diabetes by protecting islet b-cells from STZ-induced injury
(Figs. 2 and 3). S1P2 is known to couple with Gq, activate phospho-
lipase C that leads to Ca2+ mobilization, and induce the activation
of extracellular-regulated kinase, stress-activated protein kinase/
c-jun N-terminal kinase, and mitogen-activated protein kinase
(MAPK) p38 [15,16]. The activation of MAPK p38 is a critical event
leading to b-cell apoptosis and promoting peripheral insulin
resistance [17–19], and thus mice lacking MAPK p38 were found
to be protected against pancreatic b-cell failure and insulin resis-
tance [14]. Therefore, blockade of S1P2 signaling may lead to deac-
tivation of MAPK p38 and attenuation of STZ-induced b-cell failure/
progression of diabetes. The present study bears analogy to our
previous one, in which accelerated regeneration of hepatocytes
was observed after liver injury in S1P2

–/– mice [20], and may
suggest generalization of cell protective effect by S1P2 inactivation.
Recently, it has been suggested that S1P2 may protect against
diabetes by preventing insulin resistance; S1P2

–/– mice showed
insulin resistance [9] and S1P2 signaling increased glucose uptake
in myoblasts [8]. Although further studies are necessary to solve
this inconsistency with our findings, the protective effect on
pancreatic b-cells resulting from S1P2 inactivation may have sur-
passed the undesired insulin resistance in our system.

We further explored the possibility that the S1P2-specific antag-
onists have potential for use in the treatment of diabetes. JTE-013
decreased blood glucose levels (Fig. 4A) and reduced the incidence
of diabetes in STZ-injected mice (Fig. 4B). It has been shown that
FTY720, a pro-drug against all the S1P receptors except S1P2 (i.e.,
S1P1 and S1P3–5), reduces the incidence of diabetes in mice [21].
These results suggest that the protective effects of S1P against
diabetes (including blockade of immune cell migration) may be
mediated by non-S1P2-type S1P receptors. In this context, selective
inactivation of pro-diabetic S1P2 and preservation of anti-diabetic
non-S1P2-type S1P receptors by S1P2-specific antagonists may have
strong potential as a future anti-diabetic strategy; the ligand S1P is
abundant in the blood stream [22].

Conclusion

We report here that selective blockade of S1P2 signaling atten-
uates STZ-induced apoptosis of pancreatic b-cells and decreases
the incidence of diabetes in mice. Modulation of S1P signaling
may provide a new avenue for the treatment of diabetes.
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