Introduction

- Stable cation radical salts were first isolated in 1879 (Wurster’s Red and Blue).
- However, it was not until 1926 that the true nature of these salts as monomeric species possessing both an unpaired electron and a single unit of positive charge was decisively imputed by Weitz.
- Weitz also coined the terms ‘cation radical’ and ‘aminium’ ion.

- In 1963, Labes et al. surmised that the polymerization of N-vinylcarbazole (NVC) in acetonitrile induced by certain Wurster salts was, in fact, initiated by the NVC cation radical.
- Dimerization of NVC was disclosed in 1964 by Ellinger.
- The cation radical chain nature of the reaction was definitely established by Ledwith et al in 1968.
- DA dimerization of 1,3-cyclohexadiene under γ-radiolysis was disclosed in 1964; the radical chain nature of the reaction was identified in 1969.

Generation of Cation Radicals:

\[S \xrightarrow{-e} S^+ \]

Various methods may be applied to facilitate the remove of one electron from HOMO level: a) Chemical method; b) Photochemical method; c) Electrochemical oxidation; d) Radiolytic oxidation.

a) Chemical Method

A chemical one electron oxidant having suitable oxidation potential to match the potential of the substrate is chosen and react in inert solvent (e.g. CH$_2$Cl$_2$, MeCN). Due to the radical chain character of the reaction, only catalytic amount (e.g. 5-10%) of oxidant is need.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1.11</td>
</tr>
<tr>
<td>O</td>
<td>1.36</td>
</tr>
<tr>
<td>O</td>
<td>1.42</td>
</tr>
<tr>
<td>O</td>
<td>1.42</td>
</tr>
<tr>
<td>O</td>
<td>1.52</td>
</tr>
<tr>
<td>O</td>
<td>1.53</td>
</tr>
<tr>
<td>O</td>
<td>1.55</td>
</tr>
<tr>
<td>O</td>
<td>1.59</td>
</tr>
<tr>
<td>O</td>
<td>1.60</td>
</tr>
<tr>
<td>O</td>
<td>1.62</td>
</tr>
<tr>
<td>O</td>
<td>1.70</td>
</tr>
<tr>
<td>O</td>
<td>1.72</td>
</tr>
<tr>
<td>O</td>
<td>1.73</td>
</tr>
<tr>
<td>O</td>
<td>1.95</td>
</tr>
<tr>
<td>O</td>
<td>1.98</td>
</tr>
</tbody>
</table>
b) Photochemical Method:

This process involves the excitation of a suitable sensitizer to its excited state followed by quenching of excited sensitizer by substrate leading to the formation of substrate cation radical and sensitizer anion radical.

Sensitized Electron Transfer

\[\text{Sens} \xrightarrow{h\nu} [\text{Sens}]^* \rightarrow \text{S}^+ + [\text{Sens}]^- \xrightarrow{\text{BET}} \text{S} + \text{Sens} \]

Electron Transfer by Charge Transfer Excitation

\[\text{D} + \text{A} \xrightarrow{h\nu} [\text{D,A}] \xleftarrow{h\nu} [\text{D}^+, \text{A}^-] \]

c) Electrochemical Oxidation:

Substrate is oxidized at the electrode interface at its oxidation potential, resulting in the direct formation of the corresponding cation radical.

d) Radiolytic Oxidation:

Substrate in a cryogenic matrix is exposed to gamma ray (Normally 60Co as source).

Radical Cation Diels-Alder Reaction

![Diels-Alder Reaction Diagram]

- A typical DA reaction is not efficient unless the dienophile is substantially electron deficient.
- Reactivity umpolung of electron rich diene via cation radical formation provides an effective and direct remedy for the absence of electron deficiency in the dienic system.

Terminology:

- Caticophile: neutral component which react with cation radical
- Caticogen: neutral component which generate cation radical
- Caticogenicity: the ability to generate cation radical (assumed to parallel the half-wave potential of the caticogen)
- Caticophilicity: assumed to parallel π basicity or nucleophilicity.
Stereochemical Outcome:

Complete suprafacial stereospecificity was observed.

It was believed that the cation radical DA inherently has an extremely high endo stereoselectivity as a consequence of 1) low reaction temperature; 2) the electron deficient nature of the dienophile provides strong secondary orbital interaction in the transition state for endo addition, which closely parallel the situation exists for the Lewis acid catalyzed DA.

Regiospecificity & Chemoselectivity:

Three factors may control the selectivity:
1) Steric effect; 2) Maximum stabilization of the bisallylic transition state; 3) Charge effect

Bauld et. al. JACS 1982, 104, 2665.
Cation Radical Cycloadditions

Acyclic Diene Components:
Dienic component in the cation radical DA need not be cyclic, however substantial s-cis contents is necessary. Simple acyclic diene such as 1,3-butadiene, isoprene, piperylene, and 2,4-hexadienes are not efficient as diene component.

Styrene as Dienophiles:
Styrenes are often sufficiently caticogenic to participate in the cation radical DA, normally in the dienophilic role. Certain substrates can also assume the dienic role in the cyclodimerization.

Electron Rich Alkenes:
These substrates are moderately caticogenic but extraordinarily caticophilic. Cycloaddition to acyclic dienes is predominantly cyclobutane (CB) periselective.

Photosensitized Electron Transfer (PET) Initiation:
Compared to aminium salt condition:
- PET condition provides similar results with a wide variety of substrates.
- Especially advantageous in the case of cycloadditions involving very sensitive functionalities.
- However, cation radical lifetimes are limited by back electron transfer when cycloadditions are exceptionally slow (e.g. sterically hindered substrate).

Reynold Dissertation at the University of Texas Austin 1988

Bauld et. al. JACS 1987, 109, 4960;
Several Issues to be Addressed:

Reaction mechanism

Chemical Initiation:

initiation \(R + \text{Ar}_3N^+ \rightarrow RH^+ + \text{Ar}_3N \)
cycloaddition \(R^+ + R' \rightarrow P^+ \)
propagation 1 \(P^+ + \text{Ar}_3N \rightarrow P + \text{Ar}_3N^+ \)
propagation 2 \(P^+ + R \rightarrow P + R^+ \)

PET Initiation:

initiation \(\text{Sens} + \text{hv} \rightarrow \text{Sens}^* \)
Sens* + R \(\rightarrow \text{Sens}^- + R^+ \)
cycloaddition \(R^+ + R' \rightarrow P^+ \)
propagation \(P^+ + R \rightarrow P + R^+ \)
termination \(\text{Sens}^- + P^+ \rightarrow \text{Sens} + P \)

Stepwise vs Concerted Pathway:

Based on extensive stereochemical investigations of various pericyclic reaction, it’s more likely the reaction proceed in a concerted manner. However, many exceptions exist.

Role selectivity:

The majority of efficient radical DA cross reactions which had been observed involved systems in which the dienophile is more catagicogenic than the diene, the extraordinarily high catagiphilicity of cyclic ([4+1] type). However, [3 + 2] cycloadditions are also well established.

\[
\text{Ar}_3NSbCl_6^- + \text{SPh} \rightarrow 31\%
\]

\[
\text{Ar}_3NSbCl_6^- + \text{Ar3N} \rightarrow 45\%
\]

\[
\text{Direct DA vs Vinylcyclobutane Rearrangement:}
\]

\[
\text{Ar}_3NSbCl_6^- + \text{DCM, 0°C} \rightarrow 70\%\]

\[
\text{Ar} = \text{Ph} + \text{C} + \text{H} + \text{NO}_2 \]

\[
\text{4.5:1} + \text{2%}
\]

Cation Radical Cycloadditions

Shun Su

Direct DA vs Vinylcyclobutane Rearrangement:

\[
\text{Ar}_3\text{N}^+\text{SbCl}_6^- \xrightarrow{\text{DCM, } 0^\circ\text{C}} \text{Ar} = \text{Br} \]

\[
\text{H} \quad \text{H}
\]

Brief Summary:

1) Typical conditions: [Ar₃N⁺/DCM/0°C] or [2,4,6-triphenylpyrylium fluoroborate/MeCN/Pyrex/rt].
2) For a successful DA, diene components should either be cyclic or, if acyclic, have s-cis conformational populations.
3) The dienophile typically is of one of three basic structural types: conjugated diene, styrene, or electron rich alkene.
4) Utilizing dienophiles which are more caticogenic than the diene component is preferred for a selective DA.
5) Caticogenicity can be assessed on the basis of oxidation potentials or ionization potentials; Caticophilicity is considered to be affected by ability to stabilize the bisallylic cation radicaloid transition state, steric hindrance toward bond formation, s-cis conformation content and so on.

Synthetic Applications:

\[
\text{CHO} \quad \text{TAP (2 mol%), } \lambda > 345 \text{ nm, DCM} \quad 70\% \text{ endo/exo = 3.3:1}
\]

\[
\begin{align*}
\text{Ph}_3\text{P=CH}_2 & \quad \text{TAP (2 mol%), } \lambda > 345 \text{ nm, DCM} \\
& \quad 46\% 2:1 \text{ anti:syn}
\end{align*}
\]

Bauld et al. JACS 1989, 111, 1826.

Cation Radical Cycloadditions

Stechkhan et al. ACIEE. 1995, 34, 1900.

Cation Radical Cycloadditions

Shun Su

Bauld et al. ibid 1984, 106, 2730.
Cation Radical Cycloadditions

VCB Rearrangement:

1) DCB, hv MeCN, 72h
2) KOH, 100°C NH₂NH₂
36% for 2 steps

KH, THF reflux, 91%

3:2:1 anti/syn

Me
NHMe
Ac
Me

1) DCB, hv MeCN, 72h
2) KOH, 100°C NH₂NH₂
32% for 2 steps

KH, THF reflux

1:1 anti/syn

Me
NHMe
Ac
Me

1) DCB, hv MeCN, 72h
2) KOH, 100°C NH₂NH₂
40% for 2 steps

KH, THF reflux

1:1 anti/syn

Me
NHMe
Ac
Me

Cyclopropanation

Bauld et al. JACS 1988, 110, 8111.

OMe
Me

+ N₂CHCO₂Et

64%

Ar
MeO
EtO₂C

PET

PET or Ar₃NSbCl₆

Me
An

Me
An

OMe
Me
Ph
Ph

+ N₂CHCO₂Et

Ar₃NSbCl₆

71%

Ph
Ph

2:1 syn:anti

Bauld et al. JACS 1988, 110, 8111.

PET

PET or Ar₃NSbCl₆

Me
An

Me
An

OMe
Me
Ph
Ph

+ N₂CHCO₂Et

Ar₃NSbCl₆

81%

Ph
Ph

EtO₂C

Cation Radical Cycloadditions

VCP Rearrangement

\[\text{An} \begin{array}{c} \text{hv, DCN} \\ \text{MeCN, 22 °C} \\ 5 \text{ min} \end{array} \xrightarrow{\text{Ar}_3\text{NSbCl}_6^\cdot} \text{An} \begin{array}{c} \text{PhO} \\ \text{PhO} \end{array} \]

86%

\[\text{An} \begin{array}{c} \text{hv, DCN} \\ \text{MeCN, 59 °C} \\ 10 \text{ min} \end{array} \xrightarrow{\text{Ar}_3\text{NSbCl}_6^\cdot} \text{An} \begin{array}{c} \text{PhO} \\ \text{PhO} \end{array} \]

86%

Colon et al. ibid 1988, 110, 2324.

\[\text{MeO}_2\text{C} \begin{array}{c} \text{N} \\ \text{NH} \end{array} \]

86%

\[\text{PhO} + \text{Me} \begin{array}{c} \text{Ph} \\ \text{Ph} \end{array} \]

32/33/19/16