Topically Applied Drugs

Definition:
A topical medication is a medication that is applied to a particular place on or in the body, as opposed to systemically. (The word topical derives from Greek topikos, "of a place").

Most often this means application to body surfaces such as the skin or mucous membranes to treat ailments via a large range of classes including creams, foams, gels, lotions, and ointments.

Commonly treated diseases

- **Acne**
- Anaesthetics (pain relief)
- Actinic keratoses (precancerous patch of thick, scaly or crusty skin)
- Rosacea (redness of face)
- Impetigo (bacterial skin infection; affected 140 million in 2010)
- Furuncle (boils)
- Onychomycosis (fungal nail infection; ~10% adult population)
- Diaper rash
- Atopic dermatitis (inflammation of skin; ~20% population)
- Eczema (skin inflammation)
- Psoriasis (autoimmune disease, 2–4% population, no cure)
- Herpes/Shingles
- Melasma (dark skin discoloration)
- Androgenic alopecia (male–pattern hair loss)
- Glaucoma (increased eye pressure)
- Dry eye syndrome (upto 34% of elderly population)

Disclaimer:
This GM is primarily an overview of the synthetic efforts towards natural products based topically applied drugs. It is by no means a comprehensive coverage of all the literature surrounding the topic. The information contained herein is for informational purposes only and should NOT be used as a guideline for treatment.
Topically Applied Drugs

miscellaneous
- Ivermectin 2014; Galderma
- Alitretinoin 1999; Ligand
- Doxepin
- Flurouracil 1998; Upjohn
- Minoxidil 1988; hair
- Urea

Pilocarpine

Generic, WHO's list of essential medicines

- **Glaucoma**
 - (+)-Pilocarpine

 Isolation: Pilocarpus jaborandi (1875)
 Activity: glaucoma, hair growth
 Total Syntheses: Preobrashenks (1936), Dey, Chumachenko, DeGraw, Link, Noordam, Rapoport (x2), Buchi, Shapiro, Wang, Zhang, Davies

 For different reasons it is desirable to make pilocarpine accessible by means of an organic chemical synthesis. So far the production of (+)-pilocarpine has been accomplished by extraction from vegetable material mainly consisting of the leaves of Pilocarpus microphyllus Stapf. This tropical shrub only grows in South America, especially in Brazil.

 Buchi: JOC, 1993, 58, 62

 1. NaH; PhSeCl
 2. CpH, H2O2

 Only epoxide observed without CpH

 1. [(+)-Ipc2BrCl]
 2. EVE, Hg(OAc)2

 425 °C (FVP)
 95%

 29% (2 steps)

 cis:trans (3:2)

 47% Pd/C

 10% Py/C,H6

 61% in EtOH or EtOAc, trans isomer major product

 Zhang: JACS, 2002, 124, 8198

 1. K2CO3, MeOH, TosMIC gives <15%
 2. MeNH2 dry DCM:C6H6

 99% (2 steps)

 ee >99%

 Davies: Tetrahedron, 2009, 65, 8283

 1. [Rh(COD)Cl]2
 2. BINAP
 3. AgSbF6, rt

 92%

 dr >99:1, ee >98%

 3 steps
Retapamulin

Altabax®, GlaxoSmithKline, 2007–

Antibiotic

first new topical application antibiotic within the last 20 years

(+)-Pleuromutilin

Isolated: Pleurotus mutitus, Pleurotus passeckerianus (1951)

Activity: antibacterial against Gram-positive bacteria

Approaches: Kahn (1980, anionic oxy–Cope)
Paquette (1985–1988, late stage Michael)
Zard (2003, 8–endo–trig cyclisation)
Procter (2008–2009, RCM/SMI2 cascade)
Sorensen (2011, RCM, NHK)

Total Syntheses: Gibbons (1982, racemic, 31 steps)
Boeckman (1989, racemic, 27 steps)
Procter (2013, asymmetric, 34 steps)

SAR studies on pleuromutilin core

Commercial Route: WO 2010 056 855 A1, 2010

(+)-pleuromutilin

(prepared by fermentation)

2.2 g L⁻¹ after 6 days

Retapamulin, Altabax®

IC₅₀ (erythromycin–susceptible E. coli) = 0.33 µM

Gibbons: JOC, 1980, 45, 1540; JACS, 1982, 104, 1767

(+)-pleuromutilin

1. AcOCH₂CO₂H
 MeCl, DMAP
 11 steps
 62%

2. KOH, MeOH
 39%
 (2 steps)

(−)-pleuromutilin

Boeckman Jr.: JACS, 1989, 111, 8284

TsO

Me₂CuLi

Lefamulin, Nabirava

Phase III

From Robinson annelation

For a detailed discussion of this synthesis:
Maimone GM on Classic Terpene Synthesis

(±)-pleuromutilin

1. mCPBA
 2. BF₃·Et₂O,
 (CH₂O)₂ × rt
 89%
 (2 steps)

(−)-pleuromutilin

8 steps

25 steps

(+)-pleuromutilin

(Rom)
Topically Applied Drugs

Common modifications of pleuromutilin core

Tet. Lett., 2011, 52, 4247 (Pfizer)

Tetrahedron, 1980, 36, 1807 (Sandoz)

Spinosad (17:3 Spinosyn A:D)

JOC, 2009, 74, 478 (GSK)

JOC, 2009, 74, 478 (GSK)

Paquette (32 steps LLS, asymmetric): *JACS*, 1998, 120, 2543

More comprehensive discussion; Agrochemistry: Insecticides GM by Cherney

Roush (23 steps LLS, asymmetric): *PNAS*, 2004, 191, 11955

Conditions

1. TMSOTI, Et$_3$N
2. mCPBA, DCM;
3. TBAF

Yield

- 1. TMSCl, LiHMDs
- 2. mCPBA, AcOH/Py, DCM
- 3. HCl

562 g

Useful modification for Rubottom Oxidation

Spinosyn A

Isolation: *Saccharopolyspora spinosa* (1991)

Activity: anti-insectidal (insecticide, Dow, 1997–)

Mupirocin
Bactroban; GlaxoSmithKline, Generic, WHO's list of essential medicines
Antibiotic

(+)-Pseudomonic acid A
Isolated: Pseudomonas fluorescens (1971)
Activity: against Gram–positive bacteria
Approaches: Mootoo, Honda, Sugawara
Total/Formal Syntheses: Kozikowski, Schonenberger, Raphael, Fleet, Sinay, Snider, Curran, Keck, Bates, Williams, Barrish, Nagarajan, DeShong, Willis, Sridhi, Marko

mupirocin prepared by fermentation 1–2 mg L⁻¹ after 24 h

Snider: JACS, 1982, 104, 1114

Mootoo (Approach): Tetrahedron, 1999, 55, 8303

Topically Applied Drugs

Fusidic Acid
Leo Pharma, 1962
Generic, WHO's list of essential medicines
Antibiotic

- Isoation: *Fusidium coccineum* (1960)
- Activity: against Gram-positive bacteria
- Approaches: Deslongchamps, Jung
- Total Syntheses (degradation ptl.): Dauben, Tanabe, Ireland

SAR studies on Fusidic acid

- Fusidic acid is an antibiotic that belongs to a group of its own, the fusidanes. The molecule has a steroid-like structure but does not possess any steroid activity.'

 Br J Dermatol., 1998, 139, 37

- 'true' antibiotic

Fusidic Acid

- tetracyclic fusidane skeleton: chair–boat–chair (essential)
- Lipophilic side chain (dihydrofusidic acid has equivalent activity)
- OH groups can be replaced with other functional groups (keto, halogens sulfoxides, azides etc.)
- Carboxylic acid essential (gives rigidity but conformation of the chain is essential)
- Acetate important but can be exchanged by many other functionalities (O–acyl, S–acyl, ethers etc.)

Dauben: JACS, 1972, 94, 8593

9 steps from Hajo–Parrish ketone

- Towards synthesis of Fusidic acid degradation product

Ireland: JOC, 1977, 42, 1267

For Ireland Eschenmoser–Tanabe approach; Hermann GM on Robert Ireland

Deslongchamps (Approach): JACS 2001, 123, 8210

- Correctly set all ABC ring stereocentres
 - Incorrect C3 stereochemistry

WO 2012023081 A1

Fusidic acid

Large scale production by batch fermentation

Godtfredsen (Leo): Tetrahedron, 1979, 35, 2419

Similar rearrangements observed on using NBS and epoxides

more stable trans–anti–trans configuration
Calcitriol
Generic
Psoriasis

1,25-dihydroxycholecalciferol, 1,25-dihydroxyvitamin D₃

Isolation: Metabolite of vitamin D from chicken intestines (1971)
Activity: Increases the level of calcium (Ca²⁺) in the blood

1. DDQ
2. H₂O₂
3. Li/NH₄Cl

14% (3 steps)

Two step irradiation: 254 nm; 350 nm
50% (3 steps)

Dauben: *JACS*, 1982, 104, 5780

1. EtOH, Δ
2. NaOH

calcitriol
(8 steps)

Common methods for preparing vitamin D₃, calcitriol and its analogues

Calcitriol

Grundmann’s ketone

From Hajos–Parrish ketone

Mazur: *JACS*, 1975, 97, 6249

75% aq. dioxane
0.3 eq. pTsOH
80%

target these compounds instead

Target vitamin D₃

Vitamin D₃ degradation

Inhoffen–Lythgoe diol (Vitamin D₂ degradation)

Heck cross-coupling

25-hydroxy-Grundmann’s ketone

1. CO₂Me
2. LiAlH₄
3. NaOMe

89% (1 step)

1 mol% TsOH
1:1 dioxane/H₂O
64%
calcitriol

Vitamin D₃ degradation

25-hydroxycholesterol

Two step irradiation: 254 nm; 350 nm
50% (3 steps)

Dauben: *JACS*, 1982, 104, 5780

1. EtOH, Δ
2. NaOH

calcitriol
(8 steps)

Calcitriol

Grundmann’s ketone

From Hajos–Parrish ketone

Mazur: *JACS*, 1975, 97, 6249

75% aq. dioxane
0.3 eq. pTsOH
80%

target these compounds instead

Target vitamin D₃

Vitamin D₃ degradation

Inhoffen–Lythgoe diol (Vitamin D₂ degradation)

Heck cross-coupling

25-hydroxy-Grundmann’s ketone

1. CO₂Me
2. LiAlH₄
3. NaOMe

89% (1 step)

1 mol% TsOH
1:1 dioxane/H₂O
64%
calcitriol

Vitamin D₃ degradation

25-hydroxycholesterol

Two step irradiation: 254 nm; 350 nm
50% (3 steps)

Dauben: *JACS*, 1982, 104, 5780

1. EtOH, Δ
2. NaOH

calcitriol
(8 steps)
Podophyllotoxin

Condylox®, Wartex®

Generic, WHO's list of essential medicines

Antimiotic

(-)-Podophyllotoxin

Isolation: Podophyllum peltatum (1953)

Activity: anticancer

Total/formal syntheses: Gensler, Durst, Kaneko, Meyers, Vandewalle, Charton, Jones, Bhat, Berkowitz, Sherburn, Bach, Curran, Li, Murphy, Kraus, Caballero, Keaveney, Toste, Ishikawa, Poli, Rodrigo, Doyle, Linker, Maimone

Open chain increases anti–HIV activity

Hydrolysis to acid 500x less activity

More stable cis-2,3 lactone 100x less activity

Free OH/Phosphate appended to carbohydrates/ anilines with p-substitution

Reviews on SAR studies:

Common Synthetic approaches
- Fiedel–Crafts
- Michael addition

MeO

OH

OMe

MeO

OMe

plant tissue culture ~0.72 mg/L/day

Piperidine, tBuOH, 31°C, 5 d

podophyllotoxin

2.5:97.5

podophyllotoxin

picropodophyllotoxin

Major challenges: 1,2-cis geometry and trans lactone ring fusion

Bhat: *Tet. Lett.*, **1996**, 37, 4791

1. TFA
2. HgO
3. BF₃·Et₂O

25%

(-)-podophyllotoxin traditionally forming 1,2-cis junctions by acid catalysed cyclisation difficulty

Steel (Approach): *OBC*, **2007**, 5, 3201

MeO

OMe

OH

Ph

Si

TMS

OH

H

R

O

OMe

OMe

OTBS

(TMS)₂SiH, AIBN, C₆H₆, 80°C, 8 h

38%

(+)-podophyllotoxin (opposite enantiomer)

4 steps

6 steps

Sherburn: *JACS*, **2003**, 125, 12108

MeO

OMe

MeO

OMe

MeO

OMe

Maimone: *ACIE*, **2014**, 53, 3115

MeO₂C

OH

NH-DG

CO₂Me

1. LiEt₃BH
2. Protect

41%

(2 steps)

For initial Diels–Alder approaches;
JOC, **1980**, 45, 4538;
JOC, **1989**, 54, 4280

MeO

OMe

MeO

OMe

pictopodophyllotoxin

1. Me₂Si
2. nBuLi, MgBr₂

48%

(2 steps)

Pd(OAc)₂, ArI, K₂CO₃, tAmOH, 40% (8nO)₂PO₃H₂; TFA/H₂O

43% + 33% 4-epi

podophyllotoxin (5 steps)
Topically Applied Drugs

Selected oxahydrindene synthesis

White: JACS, 1995, 117, 1908

Crimmins (Total synthesis of (+)-Milbemycin D): JACS, 1996, 118, 7513

Spiroketal synthesis; Danishefsky: JACS, 1987, 109, 8117