Bernhard Witkop

• born 1917 in Freiburg, Germany
• studied Chemistry in Munich till 1938 (diploma), 1940 (PhD)
• 1938-1946 private assistant of Prof. Wieland
• 1948-1950 lecturer at the Harvard University
• US citizenship in 1953
• from 1957 Chief of the Laboratory of Chemistry, National Institute of Arthritis and Metabolic Diseases, Bethesda, MD
• his research interests were versatile, isolation of natural products, reaction mechanisms, synthetic organic chemistry, and biochemistry
• more than 300 publications, many of them in J. Am. Chem. Soc.

Biochemistry - NIH-Shift¹

expected reaction

\[
\text{expected reaction}
\]

observed reactions

\[
\text{observed reactions}
\]

mechanism?

Biochemistry - protein structure

- Enzymatic and non-enzymatic pathways to cleave amide bonds selectively were important to determine the primary sequence and the reactive center of enzymes.

- Cyanogen bromide cleaves the amide bound next to methionine.

\[
\begin{align*}
RHN_CO_NHR & \xrightarrow{\text{Br-CN}} RHN_NHR \xrightarrow{-\text{MeSCN}} \\
RHN_S_NHR & \xrightarrow{\text{hydrolysis}} RHN_CO_NH_R
\end{align*}
\]

- Only a slow reaction with cysteine, no reaction with all the other amino acids.

- NBS in 8.0 M urea cleaves amide bonds next to tryptophanes.

\[
\begin{align*}
\text{NBS} \xrightarrow{\text{H}_2\text{O}, \text{O}_2} \text{hydrolysis} \xrightarrow{-\text{RNH}_2} \\
\text{NBS}_\text{NHAc} \xrightarrow{\text{base}} \text{hydrolysis} \\
\end{align*}
\]

- No side reactions with tyrosine or other aromatic amino acids.

- Interesting reaction at pH above pH 9.

Isolation and determination of Natural Products

structure of yohimbine3

- The general structure was known, but not the absolute stereo-chemistry of the stereocenters at C15 and C20
- treatment of erectile dysfunction
- Increases blood flow in extremities
- Many side affects!! (high blood pressure, anxiety....)

- By comparison of IR-data and optical activity of synthetic and the isolated decahydro-isoquinoline, they could figure out the absolute stereo-chemistry of C15 and C20

Photochemistry

Chemistry with thymine dimers

\[\text{Photochemistry also with 3-deazapyrimidone} \]

\[\text{easy access to highly substituted diastereomERICly pure cyclobutanes} \]

Photochemistry – cage compounds

Mechanism?

1, 5%
2, 40%
3, 12%

Sterechemistry of photocyclisations with heterocyclic anilides

Explain the different mechanisms leading to the cis and the trans product?

Photooxidation of Trp to kynurenine

Synthesis and Mechanisms

Living on the edge....

1. **tetranitromethane**
2. **Na₂S₂O₄**

mechanism?

Fischer indole synthesis in polyphosphoric acid

- **polyphosphoric acid**
- **>100 °C**

Good yields, easy workup

Limitation: only the synthesis of 2-substituted indoles possible

Synthesis and Mechanisms - Chemistry of Spirooxindoles

Synthesis and Mechanisms - Twofold Wagner-Meerwein-Rearrangements12-13

Expected reaction with Lithiumorganyl

\[
\text{Expected reaction with Lithiumorganyl}
\]

Unexpected reaction with Grignard reagent

\[
\text{Unexpected reaction with Grignard reagent}
\]

Rearangement can be induced by an excess Grignard reagent, acid or BF\textsubscript{3}OEt\textsubscript{2}

Bernhard Witkop

Synthesis and Mechanisms

Deketopiperazines of 3,4-dehydroproline – unique structural properties

\[\text{HCl} \xrightarrow{\text{SOCl}_2, \text{MeOH}} \text{OMe} \xrightarrow{\text{NET}_3} \]

either D,D- or L,L-diketopiperazines

Stereodagram of the \textit{L,L}-diketopiperazine

\[14 \text{ B. Witkop et al., J. Am. Chem. Soc. 1972, 96, 539-543.} \]
Synthesis and Mechanisms

Batrachotoxin

- a cardiotoxic alkaloid from the colombian arrow poison frog *Phyllobates aurotaenia* (LD$_{50}$ = 2 µg/kg mice)
- very labil venom (4 expeditions to Colombia were necessary) and most of the experiments were carried out in µg-quantities

![Batrachotoxin A known structure](image1)
![Batrachotoxin unknown residue R](image2)

- by NMR, UV/Vis and MS they found that R is 2,4-dimethylpyrrole-3-carboxylic acid

![Derivative with fully substituted pyrrol](image3)

- ultimate proof of their hypothesis was the partial synthesis of Batrachotoxine from Batrachotoxine A and activated 2,4-dimethylpyrrole-3-carboxylic acid
