Cyclobutanes:
- exist in puckered conformation where eclipsing interactions of C-H bonds are minimized.

\[
\begin{align*}
\text{Me} & \\
\text{Me} & \\
\text{Me} & \\
\text{Me} & \\
\end{align*}
\]

strain \[27.5 \text{ kcalmol}^{-1}\]

- its inherent ring strain makes formation of cyclobutanes difficult, yet it is this strain that makes cyclobutanes extremely useful in organic synthesis.

pentacycloanammoxic acid

- ladderane with 5 fused cyclobutanes
- 3 times the strain of a single cyclobutane
- found in bacteria-anammox process
- protects organisms from NH2OH/H2NNH2 formed in production of N2 and H2O from nitrates and nitrates
- cyclobutanes are the basic structural unit in bacteria, fungi, plants and marine invertebrates
- many biological activities: cpds like amino acids, peptides and nucleosides with cyclobutane often exhibit protective properties against UV.

* Nature 2002, 419, 708

Useful reviews on this topic:

* Cyclobutanes in Catalysis * Cramer, ACIE 2011, 50, 7740.
* Photochemical Reactions as Key Steps in NP Synthesis * Bach, ACIE 2011, 50,1000
* Photocycloaddition in NP Synthesis * Greaney, EJOC 2007 4801

Some methods to form cyclobutanes:

[2+2] cycloaddition of olefins:
- photochemically with \(\pi, \pi \)-unsat. substrates (mostly cyclic)
- C=O cpds
- ring closure via 1,4-diradical
- common sensitzers (for population of triplet state) are acetone/benzophenone
- OR TM-catalyzed [2+2]

Most naturally occuring NP containing cyclobutanes were synthesized using [2+2] cycloadd. of olefins.
Cyclobutanes in Organic Synthesis

Punctaporonin C
Bach, *ACIE* **2008**, 47, 6189

(+)-*Solanascone*

(-)-*Biyouyanagin A*

(JACS **2008**, 130, 11114)

(-)-*Littoralisone*

(+)-pentacycloammonoxic acid

JACS **2006**, 128, 3118

- use of 1,5-dienes in intramolecular [2+2] photocycloaddition leads to crossed regioselectivity

α-trans-**Bergamotene**
Corey, *JACS* **1971**, 93, 7016

(+)-**Paeonilbin**
Takano, *JACS* **2002**, 124, 4081

-4 studies towards the skeleton core
-3 of which involves a [2+2] photocycloaddition
-11 stereocenters

Lear, *TL* **2009**, 50, 1731

Sulikowski, OL **2006**, 8, 903

- use of 1,5-dienes in intramolecular [2+2] photocycloaddition leads to crossed regioselectivity

Nicolaou

Noyori cat. A

(84%, 92% ee)

MeO₂C

OH

CAN, MeOH

(58% dr 1:1)

1. Grubbs I

2. NaBH₄

(75%)

- use of 1,5-dienes in intramolecular [2+2] photocycloaddition leads to crossed regioselectivity

-4 studies towards the skeleton core
-3 of which involves a [2+2] photocycloaddition
-11 stereocenters

Lear, *TL* **2009**, 50, 1731

Sulikowski, OL **2006**, 8, 903

Baran Group Meeting

Cyclobutanes in Organic Synthesis

Nishikama - radical cyclization

\[
\text{Hajos-Parrish ketone} \rightarrow \text{Cyclobutane} (77\%)
\]

Other development of [2+2]-cycloaddition:

- [2+2] cycloaddition between 2 acyclic enones

\[
\text{Ph} + \text{Ph} \rightarrow \text{Cyclobutane} (84\%, dr >10:1)
\]

C-H activation to form cyclobutanes

- R" has to be ester
- R' alkyl
- 10g scale (81\%) for R" = Me and R'=COOMe
- examples with more aromatic substitution

\[
\text{Baudoin, JACS 2008, 130, 15157}
\]

Solanececpin A

Hiemstra - via [2+2] photocycloaddition

Miyashita - cyclization of epoxynitrile

Nishikama, CL 2012, 287

Bray, TL 2006, 47, 3937
Direct ring closure to cyclobutanes - some recent examples

CuX (5mol%), Ligand (5mol%), B(pin) (1eq) rt, [B(pin)]2 (2 eq) base (1eq) rt

- bigger rings (5 or 6) can be made by increasing alkyl chain length (93%, 99:1 trans) Ito, JACS 2010, 132, 5990

Cyclobutanes from cyclopropanes - some recent examples

Barluenga, ACIE 2009, 48, 7569

Applications of cyclobutanes

- many examples covered in previous group meetings

Cyclobutane from sugar - one example

Pestalotiopsis A

Paquette, OL 2006, 8, 2429

BMS-708,163

- bicyc[1.1.1]pentane motif is a phenyl ring bioisotere
- in this case, observed 4 fold increase Cmax, solubility, activity, RRCK
- such motif easier to functionalize than aromatic system

Klement Foo

Pfizer, J. Med. Chem. 2012, 55, 3414
Cyclobutanes in Organic Synthesis

Byssochlamic acid

- attempted synthesis of seychellene
 - eg. of divinyl cyclobutane rearrangement

CP263114

- a common strategy to open annelated cyclobutanone

4 to 8 membered ring
- studies towards Taxol skeleton using cyclobutanes: see Wilde GM
 - Winkler, **J 1992**, 34, 7049; Blechert, **TL 1992**, 46, 6953

Tetramethyldimediterraneol B

- Mechanism?

Desdimethyl-dihydroclovene

- Mechanism?

Longifolene

- Winkler's synthesis of ingenol: see **JACS 2002**, 124, 9726
- Winkler's synthesis of saudin: see **JACS 1999**, 121, 7425
- see Cherny GM "Guaianes and Xanthanes" for alismol, dehydrokessans, pelocarpene.

Snider, JOC 1988, 53, 4508

Snapper, JACS 1999, 121, 4534

Oppolzer, JACS 1978, 100, 2583

Eguchi, JOC 1999, 64, 707
Cyclobutanes in Organic Synthesis

(+)-Guanacastepene A
Sorensen, JACS 2006, 128, 7025

Linderol A
Yamashita, SL 2004, 1897

Cylindrocyclophane
Danheiser, JOC 1984, 49, 1672

Balanitol
Angela, T 1987, 43, 5537

Mechanism?

- see Foo GM "JACS 1989" for echinospirin
- not covering squarate ester enlargement to phenolic system

Mechanism?

- Sc(OTf)3 is LA for R' = Ar otherwise
- they also attempted a one-pot [(2+2)+2] - form cyclobutane then THP using same LA

Johnson, JACS 2009, 131, 14202
Cyclobutanes in Organic Synthesis

1. PPTS
2. PhSeCl, HCl, NaI04

(49%)

Oxidation, p-TSA (94%)

DMDO, quant.

1. NaH
2. Mel (90%)

-2-aryl-2,3-dihydrobenzofurans
embedded in pterocarpan family
of NPs

Engler, JOC 1999, 64, 2391

Ghera, TL 1987, 28, 709

Gingkolide B

Crimmins, JACS 1999, 121, 10249

-precursor to trichotheconoids

White, Syn. 1998, 619

- ultimate cascade

Filjé, Chem. Ber. 1988, 121, 525

(--)-Merrilactone A

Inoue, ACIE 2006, 45, 4943;
JACS 2003, 125, 10772

-Mehta et al. also used [2+2]
to establish the 2 quaternary
tocenters, but built it
left to right.
Cyclobutanones in Organic Synthesis

\[\text{Reaction 1:} \quad \text{Br} \quad \xrightarrow{\text{OMe}} \quad \text{TMS} \quad \xrightarrow{\text{Li}} \quad \text{HO} \quad \xrightarrow{\text{TMS}} \quad \text{HO} \quad \xrightarrow{\text{Br}} \quad + \quad \text{HO} \quad \xrightarrow{\text{TMS}} \quad \text{HO} \quad \xrightarrow{\text{Br}} \]

\[\text{Reaction 2:} \quad \text{Bu}_3\text{Sn} \quad \xrightarrow{\text{SnBu}_3} \quad \text{Pd(PPh)}_3 \quad \xrightarrow{\text{SnBu}_3} \quad \text{HO} \quad \xrightarrow{\text{TMS}} \quad \text{OH} \quad \xrightarrow{\text{TMS}} \quad \text{HO} \quad \xrightarrow{\text{TMS}} \]

\[\text{Reaction 3:} \quad \text{Ascosalipyrrolidinone} \quad \xrightarrow{\text{X-ray verified}} \quad \text{HO} \quad \xrightarrow{\text{TMS}} \quad \text{OH} \quad \xrightarrow{\text{TMS}} \quad \text{HO} \quad \xrightarrow{\text{TMS}} \quad \text{OH} \quad \xrightarrow{\text{TMS}} \]

Suffert, JACS 2001, 123, 12107